Database Management System (BBA-ITM Sem. V) Unit-3

C.P.PATEL & F.H.SHAH COMMERCE COLLEGE
(MANAGED BY SARDAR PATEL EDUCATION TRUST)
BCA, BBA (ITM) & PGDCA PROGRAMME:

BBA (ITM) Semester V - Paper Code: UM05CBBI09

UNIT 3- Data Constraints and Built-in Functions

Sr. No. | Topics

1 | Data constraints — Introduction, Type of data constraints (Not Null, Unique,
Primary Key, Foreign Key and Check);

ALTER TABLE to add/remove constraints;

3 | Scalar Functions: Numeric (Abs, Floor, Mod, Power, Round, Sign, Sqrt,
Trunc), Character (Chr, Ascii, Concat, Initcap, Lower, Substr, Trim, Upper),
Date (Add_Months, Last_Day, Next_Day, Months_Between),

Conversion (To_Number, To_Char And To_Date);

Aggregate Functions: (Avg, Count, Max, Min, Sum), Miscellaneous: (Nvl,
Decode).

N

[op I &) NN

» Constraints:-
Besides the cell name, cell length and cell data type, there are other parameters i.e.
other data constraints that can be passed to the DBA at cell creation time.

These data constraints will be connected to a cell by the DBA as flags. Whenever a
user attempts to load a cell with data, the DBA will check the data being loaded into
the cell against the data constraints defined at the time the cell was created. If data
being loaded fails any of the data constraints checks by the DBA, the DBA will not
load the data into the cell, rejects the entered record, and will flash an error message
to the user.

The constraints can be either placed at the column level or at the table level.

COLUMN LEVEL CONSTRAINTS

If the constraints are defined along with the column definition, it is called
column level constraint. Column level constraint can be applied to any one of the
column at a time i.e. they are local to a specific column. If the constraint spans across
multiple columns, the user will have to use table level constraints.

TABLE LEVEL CONSTRAINTS

If the data constraint attached to a specific cell in a table references the
contents of other cells in the table then the user will have to use table level
constraints. Table level constraints are stored as a part of the table definition.

» NULL VALUE CONCEPTS:
While creating tables, if a row lacks a data value for a particular column, that value is
said to be null. Columns of any data types may contain null values unless the column
was defined not null when table was created.

Compiled By: Dr. Mehul Patel Page 1 of 16

Database Management System (BBA-ITM Sem. V) Unit-3

Principles of NULL values:

» Setting a null value is appropriate when the actual value is unknown, or when a
value would not be meaningful.

» A null value is not equivalent to a value of zero.

> A null value will evaluate to null in any expression. E.g. null multiply by 10 is
null.

» When a column name is defined as not null, then that column becomes a
mandatory column. It implies that the user is forced to enter data into the column.

Example:

CREATE TABLE client_mst

(client_no VARCHAR2(6) NOT NULL,
name VARCHAR2(15) NOT NULL,
address1 VARCHARZ2(20));

» UNIQUE KEY CONCEPTS:
A unique key is similar to a primary key, except that the purpose of unique key is to
ensure that information in the column for each row is unique. A table may have many
unique keys.

CREATE TABLE dept

(deptno NUMBER(2) UNIQUE,

dname VARCHAR2(9), loc VARCHAR2(10));
OR

CREATE TABLE dept

(deptno NUMBER(2) CONSTRAINT pk_dept UNIQUE,

dname VARCHAR2(9), loc VARCHAR2(10))
OR

CREATE TABLE dept

(deptno NUMBER(2), dname VARCHAR2(9),

loc VARCHAR2(10),

CONSTRAINT pk_dept UNIQUE(deptno))

» CHECK CONSTRAINTS:
The CHECK constraint explicitly defines a condition. To satisfy the constraint, each
row in the table must make the condition either TRUE or unknown (due to a null).
The condition of a CHECK constraint can refer to any column in the table, but it
cannot refer to columns of other tables.

Compiled By: Dr. Mehul Patel Page 2 of 16

Database Management System (BBA-ITM Sem. V) Unit-3

Whenever Oracle evaluates a CHECK constraint condition for a particular row, any
column names in the condition refer to the column values in that row.

Restrictions on CHECK Constraints:

» The condition must be a BOOLEAN expression that can be evaluated using
the values in the row being inserted or updated.
» The condition cannot contain sub queries or sequences.
» The condition cannot include the SYSDATE, UID, USER or USERENV SQL
functions.
Example:

CREATE TABLE dept
(deptno NUMBER(6) CONSTRAINT check deptno CHECK (deptno
BETWEEN 10 AND 99), dname VARCHAR2(9) CONSTRAINT
check_dname CHECK (dname = UPPER(dname)),
loc VARCHAR2(10) CONSTRAINT check loc CHECK (upper(loc) IN
(DALLAS''BOSTON''NEW YORK','CHICAGO")

CHECK_DEPTNO |Ensures that no department numbers are less than 10 or greater than 99.
CHECK_DNAME Ensures that all department names are in uppercase.

CHECK_LOC Restricts department locations to Dallas, Boston, New York, or Chicago
in any case.

CREATE TABLE client_mst

(client_no varchar2(6) CONSTRAINTS ck clientno CHECK (client no LIKE ‘C%’),
client_name varchar2(12))

CK_CLIENTNO Ensures that client numbers must have first character as character ‘C’ in it.

> PRIMARY KEY CONCEPTS:
A primary key is one or more column(s) in a table that is used to identify each row in
the table.

A multiple column primary key is called a composite primary key.

e No primary key value can appear in more than one row in the table.
« No column that is part of the primary key can contain a null.

CREATE TABLE dept
(deptno NUMBER(2) CONSTRAINTS pk_dept PRIMARY KEY,
dname VARCHAR2(9), loc VARCHAR2(10))

OR

Compiled By: Dr. Mehul Patel Page 3 of 16

Database Management System (BBA-ITM Sem. V) Unit-3

CREATE TABLE dept
(deptno NUMBER(2) PRIMARY KEY,
dname VARCHAR2(9), loc VARCHAR2(10))
OR
CREATE TABLE dept
(deptno NUMBER(2), dname VARCHARZ2(9),
loc VARCHAR2(10) CONSTRAINTS pk_dept PRIMARY KEY (deptno))

Defining composite primary key:

CREATE TABLE stud

(sno NUMBER(2), sname VARCHAR2(9), class VARCHAR2(10) CONSTRAINTS
pk_dept PRIMARY KEY (sno, sname))

OR
CREATE TABLE stud

(sno NUMBER(2), sname VARCHAR2(9), class VARCHAR2(10) PRIMARY KEY
(sno,sname))

» FOREIGN KEY CONCEPTS:
Foreign key represents relationship between tables. A foreign key is a column (or a
group of columns) whose values are derived from the primary key of the same or
some other table.

The existence of a foreign key implies that the table with the foreign key is related to
the primary key table from which the foreign key is derived. A foreign key must have
a corresponding primary key value in the primary key table.

The foreign key/references constraints:

» Rejects and INSERT or UPDATE of a value, if a corresponding value does not exist in
the primary key table;
Rejects a DELETE, if it would invalidate a REFERENCES constraints
Must reference a PRIMARY KEY or UNIQUE column(s) in primary key table;
Must reference the PRIMARY KEY of the primary key table if no column or group of
columns is specified in the constraint;
Must reference a table and not a view or cluster
Requires that you own the primary key table, have the column-level REFERENCE
privilege on the referenced column in the primary key table
Doesn’t restrict how other constraints ma reference the same table
Requires that the FOREIGN KEY column(s) and the CONSTRAINT column(s) have
matching data types
May references the same table named in the CREATE TABLE statement.
Must not reference the same column more than once
Example:

VV VYV VVYV

Y VY

Compiled By: Dr. Mehul Patel Page 4 of 16

Database Management System (BBA-ITM Sem. V) Unit-3

Consider the stud as a primary key table:
CREATE TABLE stud
(s_no NUMBER(3) PRIMARY KEY,
s_name VARCHARZ2(9), address VARCHAR2(15))
The foreign key table:
CREATE TABLE mark
(s_no NUMBER(3) REFERENCES stud(s_no),
markl NUMBER(3), mark2 NUMBER(3))
OR
CREATE TABLE mark
(s_no NUMBER(3),
markl NUMBER(3), mark2 NUMBER(3),
FOREIGN KEY (s_no) REFERENCES stud(s_no))
OR
CREATE TABLE mark
(s_no NUMBER(3),
markl NUMBER(3), mark2 NUMBER(3))

After creating table add a foreign key constraints
ALTER TABLE mark ADD CONSTRAINTS fk FOREIGN KEY (s_no)
REFERENCES stud(s_no)

» DEFAULT VALUE CONCEPTS:
At the time of cell creation a ‘default value’ can be assigned to it. When the user is
loading a ‘record’ with values and leaves this cell empty, the DBA will automatically
load this cell with the default value specified. The data type of default value should be
match with the type of the column.

Example:
CREATE TABLE stud
(sno number(3), name varchar2(12), gender varchar2(1) DEFAULT ‘M”)

Whenever user will not enter the data in the field gender the DBA will automatically
takes the value ‘M’ for that field.

Compiled By: Dr. Mehul Patel Page 5 of 16

Database Management System (BBA-ITM Sem. V) Unit-3

> ALTER TABLE TO ADD/REMOVE CONSTRAINTS:
To add a primary key constraint after creation of a table:
ALTER TABLE <tablename> ADD PRIMARY KEY (column(s))

/7
A X4

It will add a primary key constraint to a specified column(s) specified after PRIMARY
KEY. If there are more then one column to specify then all the columns are separated by
commas and will create composite primary key.

«» To remove primary key constraint:
ALTER TABLE <tablename> DROP PRIMARY KEY;

Will remove primary key constraint from a table.

«» To add a constraint after creation of a table:
ALTER TABLE <tablename> ADD CONSTRAINTS <cons name> CHECK
<condition>

Will add constraint to a table column level or table level depends on the condition user
specifies after CHECK. If check condition with one column will create a column level
constraint and for more than one column will create table level constraint

R/
A X4

To remove user defined constraint:
ALTER TABLE <tablename> DROP CONSTRAINTS <const_name>

Will remove the constraint, which was defined on the table.

= GROUP FUNCTIONS:
» AVG
Syntax: AVG ([DISTINCT|ALL] n)
Purpose: Returns average value of n.
Example
SELECT AVG (sal) "Average” FROM emp
Average
2077.21429
= MIN
Syntax: MIN([DISTINCT|ALL] expr)
Purpose: Returns minimum value of expr.
Example
SELECT MIN(hiredate) "Minimum Date" FROM emp
MinimumDate
17-DEC-80
= MAX
Syntax: MAX([DISTINCT|ALL] expr)
Purpose: Returns maximum value of expr.
Example
SELECT MAX(sal) "Maximum Salary” FROM emp
MaximumSalary

Compiled By: Dr. Mehul Patel Page 6 of 16

Database Management System (BBA-ITM Sem. V) Unit-3

= COUNT
Syntax: COUNT ({* | [DISTINCT|ALL] expr})
Purpose: Returns the number of rows in the query.
If you specify the expr this function return rows where expr is NOT NULL. You can
count either all rows or distinct value of expr.

If you specify the asterisk (*), this function returns all rows, including duplicates and

nulls.
Examples Output
SELECT COUNT(*) "Total" FROM emp 18
SELECT COUNT(job) "Count™ FROM emp 14
SELECT COUNT(DISTINCT job) "Jobs" FROM emp 5
* SUM

Syntax: SUM([DISTINCT|ALL] n)
Purpose: Returns sum of values of n.
Example: SELECT SUM(sal) "Total”" FROM emp

29081
= NUMERIC FUNCTIONS:
e ABS
Syntax: ABS(n)
Purpose: Returns the absolute value of n
Example:
SELECT ABS(-15) "Absolute” FROM DUAL
Absolute
15
e POWER
Syntax: POWER(m, n)
Purpose: Returns m raised to the nth power. The base m and the exponent n can be
any numbers, but if m is negative, n must be an integer.
Example:
SELECT POWER(3,2) "Raised” FROM DUAL
Raised

e ROUND

Syntax: ROUND(n[,m])

Purpose: Returns n rounded to m places right of the decimal point; if m is omitted, to
0 places. m can be negative to round off digits left of the decimal point. m must
be an integer.

Example: SELECT ROUND(15.193,1) "Round” FROM DUAL

Round

15.2

SELECT ROUND(15.193,-1) "Round” FROM DUAL

Compiled By: Dr. Mehul Patel Page 7 of 16

Database Management System (BBA-ITM Sem. V) Unit-3

20
e TRUNC
Syntax: TRUNC(n[,m])

Purpose: Returns n truncated to m decimal places; if m is omitted, to 0 places. m can
be negative to truncate (make zero) m digits left of the decimal point.

Example:
SELECT TRUNC(15.79,1) "Truncate” FROM DUAL

Truncate
15.7
SELECT TRUNC(15.79,-1) "Truncate" FROM DUAL
Truncate

e SQRT
Syntax: SQRT(n)
Purpose: Returns square root of n. The value n cannot be negative. SQRT returns a
"real” result.
Example:
SELECT SQRT(26) "Square root" FROM DUAL
Square root
5.09901951
e CEIL
Syntax: CEIL(n)
Purpose: Returns smallest integer greater than or equal to n.
Example:
SELECT CEIL(15.1) "Ceiling" FROM DUAL
Ceiling
16
SELECT CEIL(-15.1) "Ceiling" FROM DUAL
Ceiling

e FLOOR
Syntax: FLOOR(n)
Purpose: Returns largest integer equal to or less than n.
Example:
SELECT FLOOR(15.7) "Floor" FROM DUAL

Compiled By: Dr. Mehul Patel Page 8 of 16

Database Management System (BBA-ITM Sem. V) Unit-3

e EXP
Syntax: EXP(n)
Purpose: Returns e raised to the nth power; e = 2.71828183 ...
Example:
SELECT EXP(4) "e to the 4th power" FROM DUAL
e to the 4th power
54.59815
e LN
Syntax: LN(n)
Purpose: Returns the natural logarithm of n, where n is greater than 0.
Example:
SELECT LN(95) "Natural log of 95" FROM DUAL
Natural log of 95

4.55387689

e LOG
Syntax: LOG(m,n)

Purpose: Returns the logarithm, base m, of n. The base m can be any positive
number other than 0 or 1 and n can be any positive number.

Example:
SELECT LOG(10,100) "Log base 10 of 100" FROM DUAL
Log base 10 of 100

e MOD
Syntax: MOD(m,n)
Purpose: Returns remainder of m divided by n. Returns m if n is 0.
Example:
SELECT MOD(11,4) "Modulus" FROM DUAL
Modulus

e GREATEST
Syntax: GREATEST (expr [,expr] ...)

Purpose: Returns the greatest of the list of exprs. All exprs after the first are
implicitly converted to the datatype of the first exprs before the comparison.
Oracle compares the exprs using non-padded comparison semantics. Character
comparison is based on the value of the character in the database character set.

Compiled By: Dr. Mehul Patel Page 9 of 16

Database Management System (BBA-ITM Sem. V) Unit-3

One character is greater than another if it has a higher value. If the value returned
by this function is character data, its datatype is always VARCHAR2.

Example:

SELECT GREATEST('HARRY',HARRIOT''HAROLD') "GREATEST" FROM
DUAL,;

GREATEST

o LEAST
Syntax: LEAST (expr [,expr] ...)

Purpose: Returns the least of the list of exprs. All exprs after the first are
implicitly converted to the datatype of the first expr before the comparison.
Oracle compares the exprs using non-padded comparison semantics. If the value
returned by this function is character data, its datatype is always VARCHARZ2.

Example:

SELECT LEAST(HARRY''HARRIOT''HAROLD") "LEAST" FROM DUAL,;

HAROLD

e SIGN
Syntax: SIGN(m)
Purpose: If n<0, the function returns -1; if n=0, the function returns O; if n>0, the
function returns 1.
SELECT SIGN(-15) "Sign" FROM DUAL
Sign

SELECT SIGN(15) "Sign" FROM DUAL
Sign
-1
SELECT SIGN(0) "Sign" FROM DUAL
Sign

— CHARACTER FUNCTIONS:
e UPPER
Syntax: UPPER(char)

Purpose: Returns char, with all letters uppercase. The return value has the same
datatype as the argument char.

Compiled By: Dr. Mehul Patel Page 10 of 16

Database Management System (BBA-ITM Sem. V) Unit-3

Example:
SELECT UPPER('Large') "Uppercase” FROM DUAL
Uppercase

e LOWER
Syntax: LOWER(char)
Purpose: Returns char, with all letters lowercase. The return value has the same
datatype as the argument char (CHAR or VARCHAR?2).
Example:
SELECT LOWER ('SCOTT') "Lowercase” FROM DUAL
Lowercase
scott
e INITCAP
Syntax: INITCAP(char)
Purpose: Returns char, with the first letter of each word in uppercase, all other letters
in lowercase. Words are delimited by white space.
Example:
SELECT INITCAP (‘the soap’) "Capitals" FROM DUAL,
Capitals
The Soap
e LENGTH
Syntax: LENGTH(char)
Purpose: Returns the length of char in characters. If char has datatype CHAR, the
length includes all trailing blanks. If char is null, this function returns null.
Example
SELECT LENGTH('SEMCOM") "Length in characters” FROM DUAL
Length in characters

e SUBSTR
Syntax: SUBSTR(char, m [,n])

Purpose: Returns a portion of char, beginning at character m, n characters long. If m
is O, it is treated as 1. If m is positive, Oracle counts from the beginning of char to
find the first character. If m is negative, Oracle counts backwards from the end of
char. If n is omitted, Oracle returns all characters to the end of char. If n is less than
1, anull'is returned.

Floating point numbers passed as arguments to substr are automatically converted to
integers.

SELECT SUBSTR ('ABCDEFG',3.1,4) "Subs" FROM DUAL
Subs

CDEF

Compiled By: Dr. Mehul Patel Page 11 of 16

Database Management System (BBA-ITM Sem. V) Unit-3

SELECT SUBSTR ('ABCDEFG',-5,4) "Subs" FROM DUAL
Subs

CDEF

e LPAD
Syntax: LPAD (charl,n [,char2])

Purpose: Returns charl, left-padded to length n with the sequence of characters in
char2; char2 defaults to a single blank space. If length of charl is longer than n, this
function returns the portion of charl that fits in n.

The argument n is the total length of the return value as it is displayed on your
terminal screen. In most character sets, this is also the number of characters in the
return value. However, in some multi-byte character sets, the display length of a
character string can differ from the number of characters in the string.

Example:
SELECT LPAD ('Page 1',15,*.") "LPAD example" FROM DUAL
LPAD example

x5 *Page 1
e RPAD
Syntax: RPAD(charl, n [,char2])

Purpose: Returns charl, right-padded to length n with char2, replicated as many
times as necessary; char2 defaults to a single blank space. If length of charl is longer
than n, this function returns the portion of charl that fits in n.

The argument n is the total length of the return value as it is displayed on your
terminal screen. In most character sets, this is also the number of characters in the
return value. However, in some multi-byte character sets, the display length of a
character string can differ from the number of characters in the string.

Example:
SELECT LPAD ('Page 1',15,*.") "LPAD example" FROM DUAL
LPAD example

page 1% % % *
e LTRIM
Syntax: LTRIM(charl [,set])

Purpose: Removes characters from the left of char, with all the leftmost characters
that appear in set removed; set defaults to a single blank space. Oracle begins
scanning char from its first character and removes all characters that appear in set
until reaching a character not in set and then returns the result string.

Compiled By: Dr. Mehul Patel Page 12 of 16

Database Management System (BBA-ITM Sem. V) Unit-3

Example:
SELECT LTRIM('xyxXxyLAST WORD','xy") "LTRIM example" FROM DUAL
LTRIM example

Xxy LAST WORD

e RTRIM
Syntax: RTRIM(char [,set])
Purpose: Returns char, with all the rightmost characters that appear in set removed,;
set defaults to a single blank space. RTRIM works similarly to LTRIM.
Example:
SELECT RTRIM('BROWNINGyxXxy',’xy") "RTRIM e.g." FROM DUAL
RTRIM e.g
BROWNINGyxX
e CHR
Syntax: CHR(n [USING NCHAR_CS])
Purpose: Returns the character having the binary equivalent to n in either the database
character set or the national character set.
Example:
SELECT CHR(67)||CHR(65)||CHR(84) "Char" FROM DUAL;
Cha
CAT
e CONCAT
Syntax: CONCAT (charl, char2)
Purpose: Returns charl concatenated with char2. This function is equivalent to the
concatenation operator (|[).
Example:
SELECT CONCAT(‘CPPATEL’,’FHSHAH’) “CONCAT” FROM DUAL
CONCAT
CPPATELFHSHAH
e REPLACE
Syntax: REPLACE(char,search_string[,replacement_string])
Purpose: Returns char with every occurrence of search_string replaced with
replacement_string. If replacement_string is omitted or null, all occurrences of
search_string are removed. If search_string is null, char is returned.
Example:
SELECT REPLACE('JACK and JUE','J",'BL") "Changes" FROM DUAL Changes

BLACK and BLUE

e ASCII
Syntax: ASClII(char)
Purpose: Returns the decimal representation in the database character set of the first
byte of char.

Compiled By: Dr. Mehul Patel Page 13 of 16

Database Management System (BBA-ITM Sem. V) Unit-3

Example:
SELECT ASCII('Q") FROM DUAL
ASCII('Q")

¢ INSTR
Syntax: INSTR (charl,char2 [,n[,m]])

Purpose: Searches charl beginning with its nth character for the mth occurrence of
char2 and returns the position of the character in charl that is the first character of
this occurrence. If n is negative, Oracle counts and searches backward from the end of
charl. The value of m must be positive. The default values of both n and m are 1,
meaning Oracle begins searching at the first character of charl for the first occurrence
of char2. The return value is relative to the beginning of charl, regardless of the
value of n, and is expressed in characters. If the search is unsuccessful (if char2 does
not appear m times after the nth character of charl) the return value is 0.

Examples
SELECT INSTR('CORPORATE FLOOR','OR/, 3, 2) "Instr" FROM DUAL
Instr
14
e SOUNDEX
Syntax: SOUNDEX(char)

Purpose: Returns a character string containing the phonetic representation of char.
This function allows you to compare words that are spelled differently, but sound
alike in English.

Example:
SELECT ename FROM emp WHERE SOUNDEX(ename) = SOUNDEX('SMYTHE')
ENAME

— DATE FUNCTIONS:
e ADD MONTHS
Syntax: ADD_MONTHS(d,n)

Purpose: Returns the date d plus n months. The argument n can be any integer. If d is
the last day of the month or if the resulting month has fewer days than the day
component of d, then the result is the last day of the resulting month. Otherwise, the
result has the same day component as d.

Example:
SELECT ADD_MONTHS(’24-JUN-04",2) “ADD MONTHS” FROM DUAL;
ADD MONTHS

24-AUG-04

Compiled By: Dr. Mehul Patel Page 14 of 16

Database Management System (BBA-ITM Sem. V) Unit-3

e LAST DAY
Syntax: LAST_DAY(d)
Purpose: Returns the date of the last day of the month that contains d. You might use
this function to determine how many days are left in the current month.
Example:
SELECT LAST DAY(’10-APR-95) "Last Date” FROM DUAL
Last Date
30-APR-95
e MONTHS BETWEEN
Syntax: MONTHS_BETWEEN(d1, d2)

Purpose: Returns number of months between dates d1 and d2. If d1 is later than d2,
result is positive; if earlier, negative. If d1 and d2 are either the same days of the
month or both last days of months, the result is always an integer; otherwise Oracle
calculates the fractional portion of the result based on a 31-day month and considers
the difference in time components of d1 and d2.

e NEXT_DAY
Syntax: NEXT_DAY(d, char)

Purpose: Returns the date of the first weekday named by char that is later than the
date d. The argument char must be a day of the week in your session's date language.
The return value has the same hours, minutes, and seconds component as the
argument d.

Example: This example returns the date of the next Tuesday after March 15, 1992.

SELECT NEXT_DAY ('15-MAR-92', TUE") "NEXT DAY" FROM DUAL
NEXT DAY

17-MAR-92

SELECT NEXT_DAY ('15-MAR-92',3) "NEXT DAY" FROM DUAL

NEXT DAY

17-MAR-92

SELECT NEXT_DAY ('15-MAR-92','Tuesday') "NEXT DAY" FROM DUAL
NEXT DAY

17-MAR-92

e Addition and subtraction of dates:
SELECT SYSDATE + 1 FROM DUAL;

Will gives the next date from the current system date. It will add number of days to a
system date.

SELECT SYSDATE - 1 FROM DUAL,

Will gives the previous date from the current system date. It will subtract number of
days to a system date.

Compiled By: Dr. Mehul Patel Page 15 of 16

Database Management System (BBA-ITM Sem. V) Unit-3

= CONVERSION FUNCTIONS:
e TO NUMBER
Syntax: TO_NUMBER(char [,fmt])

Purpose: Converts char, a value of CHAR or VARCHAR?2 datatype containing a
number in the format specified by the optional format model fmt, to a value of
NUMBER datatype.

e TO_CHAR
TO_CHAR (<expr>)

Will convert the expression into its character expression.
TO_CHAR, date conversion
Syntax: TO_CHAR (d [, fmt])

Purpose: Converts d of DATE datatype to a value of VARCHAR?2 datatype in the
format specified by the date format fmt. If you omit fmt, d is converted to a
VARCHAR? value in the default date format.

e TO_DATE
Syntax: TO_DATE (char [,fmt])

Purpose: Converts char of CHAR or VARCHAR?2 datatype to a value of DATE
datatype. The fmt is a date format specifying the format of char.

= MISCELLANEOUS FUNCTIONS:
> NVL
The NVL function can be used to return a value when a null occurs.

For example, the expression NVL (COMM, 0) returns 0 if COMM is null or the value
of COMM if it is not null. Here COMM is the field from emp table and type of that is
NUMBER so will be replaced by ZERO.

If user wants to convert the null value with any user define string value then first the
field must been converted into the character type.

For example, NVL (TO_CHAR (COMM),’Null Value’) returns a string ‘Null Value’
if the COMM is null or the value of COMM if it is not null

> DECODE
SELECT ename, empno, DECODE (deptno, 10,’ACCT’, 20,’"SALES’,’PURCHASE’)
FROM EMP;

In above query the employee name, number and department number fields will be
displayed but with deptno the DECODE function is used.

In that the deptno is the field name and of the record is having the value 10 then
‘ACCT’ will be displayed, if 20 then ‘SALES’ will be displayed and if not 10 or 20
then ‘PURCHASE’ will be displayed.

Compiled By: Dr. Mehul Patel Page 16 of 16

