

Database Management System (BBA-ITM Sem. V) Unit-3

Compiled By: Dr. Mehul Patel Page 1 of 16

C.P.PATEL & F.H.SHAH COMMERCE COLLEGE

(MANAGED BY SARDAR PATEL EDUCATION TRUST)

BCA, BBA (ITM) & PGDCA PROGRAMME:

BBA (ITM) Semester V - Paper Code: UM05CBBI09

UNIT 3- Data Constraints and Built-in Functions

Sr. No. Topics

1

2

3

4

5

6

Data constraints – Introduction, Type of data constraints (Not Null, Unique,

Primary Key, Foreign Key and Check);

ALTER TABLE to add/remove constraints;

Scalar Functions: Numeric (Abs, Floor, Mod, Power, Round, Sign, Sqrt,

Trunc), Character (Chr, Ascii, Concat, Initcap, Lower, Substr, Trim, Upper),

Date (Add_Months, Last_Day, Next_Day, Months_Between),

Conversion (To_Number, To_Char And To_Date);

Aggregate Functions: (Avg, Count, Max, Min, Sum), Miscellaneous: (Nvl,

Decode).

 Constraints:-

Besides the cell name, cell length and cell data type, there are other parameters i.e.

other data constraints that can be passed to the DBA at cell creation time.

These data constraints will be connected to a cell by the DBA as flags. Whenever a

user attempts to load a cell with data, the DBA will check the data being loaded into

the cell against the data constraints defined at the time the cell was created. If data

being loaded fails any of the data constraints checks by the DBA, the DBA will not

load the data into the cell, rejects the entered record, and will flash an error message

to the user.

The constraints can be either placed at the column level or at the table level.

COLUMN LEVEL CONSTRAINTS

 If the constraints are defined along with the column definition, it is called

column level constraint. Column level constraint can be applied to any one of the

column at a time i.e. they are local to a specific column. If the constraint spans across

multiple columns, the user will have to use table level constraints.

TABLE LEVEL CONSTRAINTS

If the data constraint attached to a specific cell in a table references the

contents of other cells in the table then the user will have to use table level

constraints. Table level constraints are stored as a part of the table definition.

 NULL VALUE CONCEPTS:

While creating tables, if a row lacks a data value for a particular column, that value is

said to be null. Columns of any data types may contain null values unless the column

was defined not null when table was created.

Database Management System (BBA-ITM Sem. V) Unit-3

Compiled By: Dr. Mehul Patel Page 2 of 16

Principles of NULL values:

 Setting a null value is appropriate when the actual value is unknown, or when a

value would not be meaningful.

 A null value is not equivalent to a value of zero.

 A null value will evaluate to null in any expression. E.g. null multiply by 10 is

null.

 When a column name is defined as not null, then that column becomes a

mandatory column. It implies that the user is forced to enter data into the column.

Example:

 CREATE TABLE client_mst

 (client_no VARCHAR2(6) NOT NULL,

 name VARCHAR2(15) NOT NULL,

 address1 VARCHAR2(20));

 UNIQUE KEY CONCEPTS:

A unique key is similar to a primary key, except that the purpose of unique key is to

ensure that information in the column for each row is unique. A table may have many

unique keys.

CREATE TABLE dept

(deptno NUMBER(2) UNIQUE,

dname VARCHAR2(9), loc VARCHAR2(10));

 OR

CREATE TABLE dept

(deptno NUMBER(2) CONSTRAINT pk_dept UNIQUE,

dname VARCHAR2(9), loc VARCHAR2(10))

 OR

CREATE TABLE dept

(deptno NUMBER(2), dname VARCHAR2(9),

loc VARCHAR2(10),

CONSTRAINT pk_dept UNIQUE(deptno))

 CHECK CONSTRAINTS:

The CHECK constraint explicitly defines a condition. To satisfy the constraint, each

row in the table must make the condition either TRUE or unknown (due to a null).

The condition of a CHECK constraint can refer to any column in the table, but it

cannot refer to columns of other tables.

Database Management System (BBA-ITM Sem. V) Unit-3

Compiled By: Dr. Mehul Patel Page 3 of 16

Whenever Oracle evaluates a CHECK constraint condition for a particular row, any

column names in the condition refer to the column values in that row.

Restrictions on CHECK Constraints:

 The condition must be a BOOLEAN expression that can be evaluated using

the values in the row being inserted or updated.

 The condition cannot contain sub queries or sequences.

 The condition cannot include the SYSDATE, UID, USER or USERENV SQL

functions.

Example:

CREATE TABLE dept

(deptno NUMBER(6) CONSTRAINT check_deptno CHECK (deptno

BETWEEN 10 AND 99), dname VARCHAR2(9) CONSTRAINT

check_dname CHECK (dname = UPPER(dname)),

loc VARCHAR2(10) CONSTRAINT check_loc CHECK (upper(loc) IN

('DALLAS','BOSTON','NEW YORK','CHICAGO'))

CHECK_DEPTNO Ensures that no department numbers are less than 10 or greater than 99.

CHECK_DNAME Ensures that all department names are in uppercase.

CHECK_LOC Restricts department locations to Dallas, Boston, New York, or Chicago

in any case.

 CREATE TABLE client_mst

(client_no varchar2(6) CONSTRAINTS ck_clientno CHECK (client_no LIKE „C%‟),

client_name varchar2(12))

CK_CLIENTNO Ensures that client numbers must have first character as character „C‟ in it.

 PRIMARY KEY CONCEPTS:

A primary key is one or more column(s) in a table that is used to identify each row in

the table.

A multiple column primary key is called a composite primary key.

 No primary key value can appear in more than one row in the table.

 No column that is part of the primary key can contain a null.

CREATE TABLE dept

(deptno NUMBER(2) CONSTRAINTS pk_dept PRIMARY KEY,

dname VARCHAR2(9), loc VARCHAR2(10))

 OR

Database Management System (BBA-ITM Sem. V) Unit-3

Compiled By: Dr. Mehul Patel Page 4 of 16

CREATE TABLE dept

(deptno NUMBER(2) PRIMARY KEY,

dname VARCHAR2(9), loc VARCHAR2(10))

 OR

CREATE TABLE dept

(deptno NUMBER(2), dname VARCHAR2(9),

loc VARCHAR2(10) CONSTRAINTS pk_dept PRIMARY KEY (deptno))

Defining composite primary key:

CREATE TABLE stud

(sno NUMBER(2), sname VARCHAR2(9), class VARCHAR2(10) CONSTRAINTS

pk_dept PRIMARY KEY (sno, sname))

OR

CREATE TABLE stud

(sno NUMBER(2), sname VARCHAR2(9), class VARCHAR2(10) PRIMARY KEY

(sno,sname))

 FOREIGN KEY CONCEPTS:

Foreign key represents relationship between tables. A foreign key is a column (or a

group of columns) whose values are derived from the primary key of the same or

some other table.

The existence of a foreign key implies that the table with the foreign key is related to

the primary key table from which the foreign key is derived. A foreign key must have

a corresponding primary key value in the primary key table.

The foreign key/references constraints:

 Rejects and INSERT or UPDATE of a value, if a corresponding value does not exist in

the primary key table;

 Rejects a DELETE, if it would invalidate a REFERENCES constraints

 Must reference a PRIMARY KEY or UNIQUE column(s) in primary key table;

 Must reference the PRIMARY KEY of the primary key table if no column or group of

columns is specified in the constraint;

 Must reference a table and not a view or cluster

 Requires that you own the primary key table, have the column-level REFERENCE

privilege on the referenced column in the primary key table

 Doesn‟t restrict how other constraints ma reference the same table

 Requires that the FOREIGN KEY column(s) and the CONSTRAINT column(s) have

matching data types

 May references the same table named in the CREATE TABLE statement.

 Must not reference the same column more than once

Example:

Database Management System (BBA-ITM Sem. V) Unit-3

Compiled By: Dr. Mehul Patel Page 5 of 16

Consider the stud as a primary key table:

CREATE TABLE stud

(s_no NUMBER(3) PRIMARY KEY,

s_name VARCHAR2(9), address VARCHAR2(15))

 The foreign key table:

CREATE TABLE mark

(s_no NUMBER(3) REFERENCES stud(s_no),

mark1 NUMBER(3), mark2 NUMBER(3))

 OR

CREATE TABLE mark

(s_no NUMBER(3),

mark1 NUMBER(3), mark2 NUMBER(3),

FOREIGN KEY (s_no) REFERENCES stud(s_no))

 OR

CREATE TABLE mark

(s_no NUMBER(3),

mark1 NUMBER(3), mark2 NUMBER(3))

After creating table add a foreign key constraints

ALTER TABLE mark ADD CONSTRAINTS fk FOREIGN KEY (s_no)

REFERENCES stud(s_no)

 DEFAULT VALUE CONCEPTS:

At the time of cell creation a „default value‟ can be assigned to it. When the user is

loading a „record‟ with values and leaves this cell empty, the DBA will automatically

load this cell with the default value specified. The data type of default value should be

match with the type of the column.

Example:

CREATE TABLE stud

(sno number(3), name varchar2(12), gender varchar2(1) DEFAULT „M‟)

Whenever user will not enter the data in the field gender the DBA will automatically

takes the value „M’ for that field.

Database Management System (BBA-ITM Sem. V) Unit-3

Compiled By: Dr. Mehul Patel Page 6 of 16

 ALTER TABLE TO ADD/REMOVE CONSTRAINTS:

 To add a primary key constraint after creation of a table:

ALTER TABLE <tablename> ADD PRIMARY KEY (column(s))

It will add a primary key constraint to a specified column(s) specified after PRIMARY

KEY. If there are more then one column to specify then all the columns are separated by

commas and will create composite primary key.

 To remove primary key constraint:

ALTER TABLE <tablename> DROP PRIMARY KEY;

Will remove primary key constraint from a table.

 To add a constraint after creation of a table:

ALTER TABLE <tablename> ADD CONSTRAINTS <cons_name> CHECK

<condition>

Will add constraint to a table column level or table level depends on the condition user

specifies after CHECK. If check condition with one column will create a column level

constraint and for more than one column will create table level constraint

 To remove user defined constraint:

ALTER TABLE <tablename> DROP CONSTRAINTS <const_name>

Will remove the constraint, which was defined on the table.

 GROUP FUNCTIONS:

 AVG

Syntax: AVG ([DISTINCT|ALL] n)

Purpose: Returns average value of n.

Example

 SELECT AVG (sal) "Average" FROM emp

 Average

 2077.21429

 MIN

Syntax: MIN([DISTINCT|ALL] expr)

Purpose: Returns minimum value of expr.

Example

SELECT MIN(hiredate) "Minimum Date" FROM emp

MinimumDate

17-DEC-80

 MAX

Syntax: MAX([DISTINCT|ALL] expr)

Purpose: Returns maximum value of expr.

Example

SELECT MAX(sal) "Maximum Salary" FROM emp

MaximumSalary

5000

Database Management System (BBA-ITM Sem. V) Unit-3

Compiled By: Dr. Mehul Patel Page 7 of 16

 COUNT

Syntax: COUNT ({* | [DISTINCT|ALL] expr})

Purpose: Returns the number of rows in the query.

If you specify the expr this function return rows where expr is NOT NULL. You can

count either all rows or distinct value of expr.

If you specify the asterisk (*), this function returns all rows, including duplicates and

nulls.

Examples Output

SELECT COUNT(*) "Total" FROM emp 18

SELECT COUNT(job) "Count" FROM emp 14

SELECT COUNT(DISTINCT job) "Jobs" FROM emp 5

 SUM

Syntax: SUM([DISTINCT|ALL] n)

Purpose: Returns sum of values of n.

Example: SELECT SUM(sal) "Total" FROM emp

Total

29081

 NUMERIC FUNCTIONS:

 ABS

Syntax: ABS(n)

Purpose: Returns the absolute value of n

Example:

SELECT ABS(-15) "Absolute" FROM DUAL

Absolute

 15

 POWER

Syntax: POWER(m, n)

Purpose: Returns m raised to the nth power. The base m and the exponent n can be

any numbers, but if m is negative, n must be an integer.

Example:

SELECT POWER(3,2) "Raised" FROM DUAL

 Raised

 9

 ROUND

Syntax: ROUND(n[,m])

Purpose: Returns n rounded to m places right of the decimal point; if m is omitted, to

0 places. m can be negative to round off digits left of the decimal point. m must

be an integer.

Example: SELECT ROUND(15.193,1) "Round" FROM DUAL

Round

 15.2

 SELECT ROUND(15.193,-1) "Round" FROM DUAL

Database Management System (BBA-ITM Sem. V) Unit-3

Compiled By: Dr. Mehul Patel Page 8 of 16

 Round

 20

 TRUNC

Syntax: TRUNC(n[,m])

Purpose: Returns n truncated to m decimal places; if m is omitted, to 0 places. m can

be negative to truncate (make zero) m digits left of the decimal point.

Example:

SELECT TRUNC(15.79,1) "Truncate" FROM DUAL

 Truncate

 15.7

SELECT TRUNC(15.79,-1) "Truncate" FROM DUAL

 Truncate

 10

 SQRT

Syntax: SQRT(n)

Purpose: Returns square root of n. The value n cannot be negative. SQRT returns a

"real" result.

Example:

SELECT SQRT(26) "Square root" FROM DUAL

Square root

5.09901951

 CEIL

Syntax: CEIL(n)

Purpose: Returns smallest integer greater than or equal to n.

Example:

SELECT CEIL(15.1) "Ceiling" FROM DUAL

Ceiling

 16

SELECT CEIL(-15.1) "Ceiling" FROM DUAL

Ceiling

 -15

 FLOOR

Syntax: FLOOR(n)

Purpose: Returns largest integer equal to or less than n.

Example:

SELECT FLOOR(15.7) "Floor" FROM DUAL

Database Management System (BBA-ITM Sem. V) Unit-3

Compiled By: Dr. Mehul Patel Page 9 of 16

Floor

 15

 EXP

Syntax: EXP(n)

Purpose: Returns e raised to the nth power; e = 2.71828183 ...

Example:

SELECT EXP(4) "e to the 4th power" FROM DUAL

e to the 4th power

 54.59815

 LN

Syntax: LN(n)

Purpose: Returns the natural logarithm of n, where n is greater than 0.

Example:

SELECT LN(95) "Natural log of 95" FROM DUAL

Natural log of 95

 4.55387689

 LOG

Syntax: LOG(m,n)

Purpose: Returns the logarithm, base m, of n. The base m can be any positive

number other than 0 or 1 and n can be any positive number.

Example:

SELECT LOG(10,100) "Log base 10 of 100" FROM DUAL

Log base 10 of 100

 2

 MOD

Syntax: MOD(m,n)

Purpose: Returns remainder of m divided by n. Returns m if n is 0.

Example:

SELECT MOD(11,4) "Modulus" FROM DUAL

 Modulus

 3

 GREATEST

Syntax: GREATEST(expr [,expr] ...)

Purpose: Returns the greatest of the list of exprs. All exprs after the first are

implicitly converted to the datatype of the first exprs before the comparison.

Oracle compares the exprs using non-padded comparison semantics. Character

comparison is based on the value of the character in the database character set.

Database Management System (BBA-ITM Sem. V) Unit-3

Compiled By: Dr. Mehul Patel Page 10 of 16

One character is greater than another if it has a higher value. If the value returned

by this function is character data, its datatype is always VARCHAR2.

Example:

SELECT GREATEST('HARRY','HARRIOT','HAROLD') "GREATEST" FROM

DUAL;

GREATEST

HARRY

 LEAST

Syntax: LEAST(expr [,expr] ...)

Purpose: Returns the least of the list of exprs. All exprs after the first are

implicitly converted to the datatype of the first expr before the comparison.

Oracle compares the exprs using non-padded comparison semantics. If the value

returned by this function is character data, its datatype is always VARCHAR2.

Example:

SELECT LEAST('HARRY','HARRIOT','HAROLD') "LEAST" FROM DUAL;

LEAST

HAROLD

 SIGN

Syntax: SIGN(m)

Purpose: If n<0, the function returns -1; if n=0, the function returns 0; if n>0, the

function returns 1.

SELECT SIGN(-15) "Sign" FROM DUAL

 Sign

 -1

SELECT SIGN(15) "Sign" FROM DUAL

 Sign

 -1

SELECT SIGN(0) "Sign" FROM DUAL

 Sign

 0

 CHARACTER FUNCTIONS:

 UPPER

Syntax: UPPER(char)

Purpose: Returns char, with all letters uppercase. The return value has the same

datatype as the argument char.

Database Management System (BBA-ITM Sem. V) Unit-3

Compiled By: Dr. Mehul Patel Page 11 of 16

Example:

SELECT UPPER('Large') "Uppercase" FROM DUAL

Uppercase

LARGE

 LOWER

Syntax: LOWER(char)

Purpose: Returns char, with all letters lowercase. The return value has the same

datatype as the argument char (CHAR or VARCHAR2).

Example:

SELECT LOWER ('SCOTT') "Lowercase" FROM DUAL

Lowercase

scott

 INITCAP

Syntax: INITCAP(char)

Purpose: Returns char, with the first letter of each word in uppercase, all other letters

in lowercase. Words are delimited by white space.

Example:

SELECT INITCAP ('the soap') "Capitals" FROM DUAL;

Capitals

The Soap

 LENGTH

Syntax: LENGTH(char)

Purpose: Returns the length of char in characters. If char has datatype CHAR, the

length includes all trailing blanks. If char is null, this function returns null.

Example

SELECT LENGTH('SEMCOM') "Length in characters" FROM DUAL

Length in characters

 6

 SUBSTR

Syntax: SUBSTR(char, m [,n])

Purpose: Returns a portion of char, beginning at character m, n characters long. If m

is 0, it is treated as 1. If m is positive, Oracle counts from the beginning of char to

find the first character. If m is negative, Oracle counts backwards from the end of

char. If n is omitted, Oracle returns all characters to the end of char. If n is less than

1, a null is returned.

Floating point numbers passed as arguments to substr are automatically converted to

integers.

SELECT SUBSTR ('ABCDEFG',3.1,4) "Subs" FROM DUAL

Subs

CDEF

Database Management System (BBA-ITM Sem. V) Unit-3

Compiled By: Dr. Mehul Patel Page 12 of 16

SELECT SUBSTR ('ABCDEFG',-5,4) "Subs" FROM DUAL

Subs

CDEF

 LPAD

Syntax: LPAD (char1,n [,char2])

Purpose: Returns char1, left-padded to length n with the sequence of characters in

char2; char2 defaults to a single blank space. If length of char1 is longer than n, this

function returns the portion of char1 that fits in n.

The argument n is the total length of the return value as it is displayed on your

terminal screen. In most character sets, this is also the number of characters in the

return value. However, in some multi-byte character sets, the display length of a

character string can differ from the number of characters in the string.

Example:

SELECT LPAD ('Page 1',15,'*.') "LPAD example" FROM DUAL

LPAD example

..*.*.*Page 1

 RPAD

Syntax: RPAD(char1, n [,char2])

Purpose: Returns char1, right-padded to length n with char2, replicated as many

times as necessary; char2 defaults to a single blank space. If length of char1 is longer

than n, this function returns the portion of char1 that fits in n.

The argument n is the total length of the return value as it is displayed on your

terminal screen. In most character sets, this is also the number of characters in the

return value. However, in some multi-byte character sets, the display length of a

character string can differ from the number of characters in the string.

Example:

SELECT LPAD ('Page 1',15,'*.') "LPAD example" FROM DUAL

LPAD example

Page 1*.*.*.*.*

 LTRIM

Syntax: LTRIM(char1 [,set])

Purpose: Removes characters from the left of char, with all the leftmost characters

that appear in set removed; set defaults to a single blank space. Oracle begins

scanning char from its first character and removes all characters that appear in set

until reaching a character not in set and then returns the result string.

Database Management System (BBA-ITM Sem. V) Unit-3

Compiled By: Dr. Mehul Patel Page 13 of 16

Example:

SELECT LTRIM('xyxXxyLAST WORD','xy') "LTRIM example" FROM DUAL

LTRIM example

Xxy LAST WORD

 RTRIM

Syntax: RTRIM(char [,set])

Purpose: Returns char, with all the rightmost characters that appear in set removed;

set defaults to a single blank space. RTRIM works similarly to LTRIM.

Example:

SELECT RTRIM('BROWNINGyxXxy','xy') "RTRIM e.g." FROM DUAL

RTRIM e.g

BROWNINGyxX

 CHR

Syntax: CHR(n [USING NCHAR_CS])

Purpose: Returns the character having the binary equivalent to n in either the database

character set or the national character set.

Example:

SELECT CHR(67)||CHR(65)||CHR(84) "Char" FROM DUAL;

Cha

CAT

 CONCAT

Syntax: CONCAT (char1, char2)

Purpose: Returns char1 concatenated with char2. This function is equivalent to the

concatenation operator (||).

Example:

 SELECT CONCAT(„CPPATEL‟,‟FHSHAH‟) “CONCAT” FROM DUAL

CONCAT

CPPATELFHSHAH

 REPLACE

Syntax: REPLACE(char,search_string[,replacement_string])

Purpose: Returns char with every occurrence of search_string replaced with

replacement_string. If replacement_string is omitted or null, all occurrences of

search_string are removed. If search_string is null, char is returned.

Example:

SELECT REPLACE('JACK and JUE','J','BL') "Changes" FROM DUAL Changes

BLACK and BLUE

 ASCII

Syntax: ASCII(char)

Purpose: Returns the decimal representation in the database character set of the first

byte of char.

Database Management System (BBA-ITM Sem. V) Unit-3

Compiled By: Dr. Mehul Patel Page 14 of 16

Example:

SELECT ASCII('Q') FROM DUAL

ASCII('Q')

 81

 INSTR

Syntax: INSTR (char1,char2 [,n[,m]])

Purpose: Searches char1 beginning with its nth character for the mth occurrence of

char2 and returns the position of the character in char1 that is the first character of

this occurrence. If n is negative, Oracle counts and searches backward from the end of

char1. The value of m must be positive. The default values of both n and m are 1,

meaning Oracle begins searching at the first character of char1 for the first occurrence

of char2. The return value is relative to the beginning of char1, regardless of the

value of n, and is expressed in characters. If the search is unsuccessful (if char2 does

not appear m times after the nth character of char1) the return value is 0.

Examples

SELECT INSTR('CORPORATE FLOOR','OR', 3, 2) "Instr" FROM DUAL

Instr

 14

 SOUNDEX

Syntax: SOUNDEX(char)

Purpose: Returns a character string containing the phonetic representation of char.

This function allows you to compare words that are spelled differently, but sound

alike in English.

Example:

SELECT ename FROM emp WHERE SOUNDEX(ename) = SOUNDEX('SMYTHE')

ENAME

SMITH

 DATE FUNCTIONS:

 ADD_MONTHS

Syntax: ADD_MONTHS(d,n)

Purpose: Returns the date d plus n months. The argument n can be any integer. If d is

the last day of the month or if the resulting month has fewer days than the day

component of d, then the result is the last day of the resulting month. Otherwise, the

result has the same day component as d.

Example:

SELECT ADD_MONTHS(‟24-JUN-04‟,2) “ADD MONTHS” FROM DUAL;

ADD MONTHS

24-AUG-04

Database Management System (BBA-ITM Sem. V) Unit-3

Compiled By: Dr. Mehul Patel Page 15 of 16

 LAST_DAY

Syntax: LAST_DAY(d)

Purpose: Returns the date of the last day of the month that contains d. You might use

this function to determine how many days are left in the current month.

Example:

SELECT LAST_DAY(‟10-APR-95) "Last Date” FROM DUAL

Last Date

30-APR-95

 MONTHS_BETWEEN

Syntax: MONTHS_BETWEEN(d1, d2)

Purpose: Returns number of months between dates d1 and d2. If d1 is later than d2,

result is positive; if earlier, negative. If d1 and d2 are either the same days of the

month or both last days of months, the result is always an integer; otherwise Oracle

calculates the fractional portion of the result based on a 31-day month and considers

the difference in time components of d1 and d2.

 NEXT_DAY

Syntax: NEXT_DAY(d, char)

Purpose: Returns the date of the first weekday named by char that is later than the

date d. The argument char must be a day of the week in your session's date language.

The return value has the same hours, minutes, and seconds component as the

argument d.

Example: This example returns the date of the next Tuesday after March 15, 1992.

SELECT NEXT_DAY ('15-MAR-92','TUE') "NEXT DAY" FROM DUAL

NEXT DAY

17-MAR-92

SELECT NEXT_DAY ('15-MAR-92',3) "NEXT DAY" FROM DUAL

NEXT DAY

17-MAR-92

SELECT NEXT_DAY ('15-MAR-92','Tuesday') "NEXT DAY" FROM DUAL

NEXT DAY

17-MAR-92

 Addition and subtraction of dates:

SELECT SYSDATE + 1 FROM DUAL;

Will gives the next date from the current system date. It will add number of days to a

system date.

SELECT SYSDATE - 1 FROM DUAL;

Will gives the previous date from the current system date. It will subtract number of

days to a system date.

Database Management System (BBA-ITM Sem. V) Unit-3

Compiled By: Dr. Mehul Patel Page 16 of 16

 CONVERSION FUNCTIONS:

 TO_NUMBER

Syntax: TO_NUMBER(char [,fmt])

Purpose: Converts char, a value of CHAR or VARCHAR2 datatype containing a

number in the format specified by the optional format model fmt, to a value of

NUMBER datatype.

 TO_CHAR

TO_CHAR (<expr>)

 Will convert the expression into its character expression.

TO_CHAR, date conversion

Syntax: TO_CHAR (d [, fmt])

Purpose: Converts d of DATE datatype to a value of VARCHAR2 datatype in the

format specified by the date format fmt. If you omit fmt, d is converted to a

VARCHAR2 value in the default date format.

 TO_DATE

Syntax: TO_DATE (char [,fmt])

Purpose: Converts char of CHAR or VARCHAR2 datatype to a value of DATE

datatype. The fmt is a date format specifying the format of char.

 MISCELLANEOUS FUNCTIONS:

 NVL

The NVL function can be used to return a value when a null occurs.

For example, the expression NVL (COMM, 0) returns 0 if COMM is null or the value

of COMM if it is not null. Here COMM is the field from emp table and type of that is

NUMBER so will be replaced by ZERO.

If user wants to convert the null value with any user define string value then first the

field must been converted into the character type.

For example, NVL (TO_CHAR (COMM),‟Null Value‟) returns a string „Null Value‟

if the COMM is null or the value of COMM if it is not null

 DECODE

SELECT ename, empno, DECODE (deptno, 10,‟ACCT‟, 20,‟SALES‟,‟PURCHASE‟)

FROM EMP;

In above query the employee name, number and department number fields will be

displayed but with deptno the DECODE function is used.

In that the deptno is the field name and of the record is having the value 10 then

„ACCT‟ will be displayed, if 20 then „SALES‟ will be displayed and if not 10 or 20

then „PURCHASE‟ will be displayed.

