
DATABASE MANAGEMENT SYSTEM UNIT-4

Compiled By: Dr. Mehul Patel Page 1 of 17

The SQL ANY and ALL Operators
The ANY and ALL operators are used with a WHERE or HAVING clause.

The ANY operator returns true if any of the subquery values meet the condition.

The ALL operator returns true if all of the subquery values meet the condition.

ANY Syntax

SELECT column_name(s)

FROM table_name

WHERE column_name operator ANY

(SELECT column_name FROM table_name WHERE condition);

ALL Syntax

SELECT column_name(s)

FROM table_name

WHERE column_name operator ALL

(SELECT column_name FROM table_name WHERE condition);

SQL ANY Examples
The ANY operator returns TRUE if any of the subquery values meet the condition.

The following SQL statement returns TRUE and lists the productnames if it finds ANY

records in the OrderDetails table that quantity = 10:

Example

SELECT ProductName

FROM Products

WHERE ProductID = ANY (SELECT ProductID FROM OrderDetails WHERE Quantity

= 10);

Example

SELECT ProductName

FROM Products

WHERE ProductID = ANY (SELECT ProductID FROM OrderDetails WHERE Quantity

> 99);

SQL ALL Example
The ALL operator returns TRUE if all of the subquery values meet the condition.

The following SQL statement returns TRUE and lists the productnames if ALL the records in

the OrderDetails table has quantity = 10:

Example

SELECT ProductName

FROM Products

WHERE ProductID= ALL (SELECT ProductID FROM OrderDetails WHERE Quantity= 10)

;

Oracle Joins
Join is a query that is used to combine rows from two or more tables, views, or materialized

views. It retrieves data from multiple tables and creates a new table.

Join Conditions

There may be at least one join condition either in the FROM clause or in the WHERE clause

for joining two tables. It compares two columns from different tables and combines pair of

rows, each containing one row from each table, for which join condition is true.

DATABASE MANAGEMENT SYSTEM UNIT-4

Compiled By: Dr. Mehul Patel Page 2 of 17

Types of Joins

o Inner Joins (Simple Join)

o Outer Joins

o Left Outer Join (Left Join)

o Right Outer Join (Right Join)

o Full Outer Join (Full Join)

o Equijoins

o Self Joins

o Cross Joins (Cartesian Products)

o Antijoins

o Semijoins

SQL JOIN

A JOIN clause is used to combine rows from two or more tables, based on a related column

between them.

Let's look at a selection from the "Orders" table:

OrderID CustomerID OrderDate

10308 2 1996-09-18

10309 1 1996-09-19

10310 3 1996-09-20

Then, look at a selection from the "Customers" table:

CustomerID CustomerName ContactName Country

1 Prakash Patel Mr. Sohil Germany

2 Sunidhi Chauhan Mr. Jay Mexico

3 Hemant Vyas Ms. Prabha Mexico

Then, we can create the following SQL statement (that contains an INNER JOIN), that

selects records that have matching values in both tables:

Example

SELECT Orders.OrderID, Customers.CustomerName, Orders.OrderDate

FROM Orders

INNER JOIN Customers ON Orders.CustomerID=Customers.CustomerID;

and it will produce something like this:

OrderID CustomerName OrderDate

10308 Sunidhi Chauhan 9/18/1996

10310 Hemant Vyas 11/27/1996

10309 Prakash Patel 12/16/1996

10308 Sunidhi Chauhan 11/15/1996

10310 Hemant Vyas 8/12/1996

DATABASE MANAGEMENT SYSTEM UNIT-4

Compiled By: Dr. Mehul Patel Page 3 of 17

Different Types of SQL JOINs
Here are the different types of the JOINs in SQL:

 (INNER) JOIN: Returns records that have matching values in both tables

 LEFT (OUTER) JOIN: Returns all records from the left table, and the matched

records from the right table

 RIGHT (OUTER) JOIN: Returns all records from the right table, and the matched

records from the left table

 FULL (OUTER) JOIN: Returns all records when there is a match in either left or

right table

SQL INNER JOIN Keyword

The INNER JOIN keyword selects records that have matching values in both tables.

INNER JOIN Syntax

SELECT column_name(s)

FROM table1

INNER JOIN table2

ON table1.column_name = table2.column_name;

Below is a selection from the "Orders" table:

OrderID CustomerID EmployeeID OrderDate ShipperID

10308 2 7 1996-09-18 3

10309 37 3 1996-09-19 1

DATABASE MANAGEMENT SYSTEM UNIT-4

Compiled By: Dr. Mehul Patel Page 4 of 17

10310 77 8 1996-09-20 2

And a selection from the "Customers" table:

CustomerID CustomerName ContactName Address City PostalCode Country

1

Alfreds Futterkiste Maria Anders Obere Str.

57

Berlin 12209 Germany

2 Ana Trujillo

Emparedados y

helados

Ana Trujillo Avda. de la

Constitución

2222

México

D.F.

05021 Mexico

3 Antonio Moreno

Taquería

Antonio

Moreno

Mataderos

2312

México

D.F.

05023 Mexico

SQL INNER JOIN Example

The following SQL statement selects all orders with customer information:

Example

SELECT Orders.OrderID, Customers.CustomerName

FROM Orders

INNER JOIN Customers ON Orders.CustomerID = Customers.CustomerID;

JOIN Three Tables

The following SQL statement selects all orders with customer and shipper information:

Example

SELECT Orders.OrderID, Customers.CustomerName, Shippers.ShipperName

FROM ((Orders

INNER JOIN Customers ON Orders.CustomerID = Customers.CustomerID)

INNER JOIN Shippers ON Orders.ShipperID = Shippers.ShipperID);

SQL LEFT JOIN Keyword

The LEFT JOIN keyword returns all records from the left table (table1), and the matched

records from the right table (table2). The result is NULL from the right side, if there is no

match.

LEFT JOIN Syntax

SELECT column_name(s)

FROM table1

LEFT JOIN table2

ON table1.column_name = table2.column_name;

Note: In some databases LEFT JOIN is called LEFT OUTER JOIN.

DATABASE MANAGEMENT SYSTEM UNIT-4

Compiled By: Dr. Mehul Patel Page 5 of 17

Below is a selection from the "Customers" table:

CustomerID CustomerName ContactName Address City PostalCode Country

1

Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany

2 Ana Trujillo

Emparedados y

helados

Ana Trujillo Avda. de la

Constitución

2222

México

D.F.

05021 Mexico

3 Antonio Moreno

Taquería

Antonio

Moreno

Mataderos 2312 México

D.F.

05023 Mexico

And a selection from the "Orders" table:

OrderID CustomerID EmployeeID OrderDate ShipperID

10308 2 7 1996-09-18 3

10309 37 3 1996-09-19 1

10310 77 8 1996-09-20 2

SQL LEFT JOIN Example

The following SQL statement will select all customers, and any orders they might have:

Example

SELECT Customers.CustomerName, Orders.OrderID

FROM Customers

LEFT JOIN Orders ON Customers.CustomerID = Orders.CustomerID

ORDER BY Customers.CustomerName;

SQL RIGHT JOIN Keyword

The RIGHT JOIN keyword returns all records from the right table (table2), and the matched

records from the left table (table1). The result is NULL from the left side, when there is no

match.

RIGHT JOIN Syntax

SELECT column_name(s)

FROM table1

RIGHT JOIN table2

ON table1.column_name = table2.column_name;

Note: In some databases RIGHT JOIN is called RIGHT OUTER JOIN.

Below is a selection from the "Orders" table:

DATABASE MANAGEMENT SYSTEM UNIT-4

Compiled By: Dr. Mehul Patel Page 6 of 17

OrderID CustomerID EmployeeID OrderDate ShipperID

10308 2 7 1996-09-18 3

10309 37 3 1996-09-19 1

10310 77 8 1996-09-20 2

And a selection from the "Employees" table:

EmployeeID LastName FirstName BirthDate Photo

1 Davolio Nancy 12/8/1968 EmpID1.pic

2 Fuller Andrew 2/19/1952 EmpID2.pic

3 Leverling Janet 8/30/1963 EmpID3.pic

SQL RIGHT JOIN Example

The following SQL statement will return all employees, and any orders they might have

placed:

Example

SELECT Orders.OrderID, Employees.LastName, Employees.FirstName

FROM Orders

RIGHT JOIN Employees ON Orders.EmployeeID = Employees.EmployeeID

ORDER BY Orders.OrderID;

SQL FULL OUTER JOIN Keyword

The FULL OUTER JOIN keyword return all records when there is a match in left (table1) or

right (table2) table records.

Remarks: FULL OUTER JOIN and FULL JOIN are the same.

FULL OUTER JOIN Syntax

SELECT column_name(s)

FROM table1

FULL OUTER JOIN table2

ON table1.column_name = table2.column_name

WHERE condition;

DATABASE MANAGEMENT SYSTEM UNIT-4

Compiled By: Dr. Mehul Patel Page 7 of 17

Below is a selection from the "Customers" table:

CustomerID CustomerName ContactName Address City PostalCode Country

1

Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany

2 Ana Trujillo

Emparedados y

helados

Ana Trujillo Avda. de la

Constitución

2222

México

D.F.

05021 Mexico

3 Antonio Moreno

Taquería

Antonio

Moreno

Mataderos

2312

México

D.F.

05023 Mexico

And a selection from the "Orders" table:

OrderID CustomerID EmployeeID OrderDate ShipperID

10308 2 7 1996-09-18 3

10309 37 3 1996-09-19 1

10310 77 8 1996-09-20 2

SQL FULL OUTER JOIN Example

The following SQL statement selects all customers, and all orders:

SELECT Customers.CustomerName, Orders.OrderID

FROM Customers

FULL OUTER JOIN Orders ON Customers.CustomerID=Orders.CustomerID

ORDER BY Customers.CustomerName;

SQL Self JOIN

A self JOIN is a regular join, but the table is joined with itself.

Self JOIN Syntax

SELECT column_name(s)

FROM table1 T1, table1 T2

WHERE condition;

T1 and T2 are different table aliases for the same table.

Demo Database

In this tutorial we will use the well-known Northwind sample database.

Below is a selection from the "Customers" table:

Custo

merID

CustomerName ContactName Address City Postal

Code

Country

1

Alfreds

Futterkiste

Maria Anders Obere Str. 57 Berlin 12209 Germany

DATABASE MANAGEMENT SYSTEM UNIT-4

Compiled By: Dr. Mehul Patel Page 8 of 17

2 Ana Trujillo

Emparedados y

helados

Ana Trujillo Avda. de la

Constitución

2222

México

D.F.

05021 Mexico

3 Antonio Moreno

Taquería

Antonio Moreno Mataderos

2312

México

D.F.

05023 Mexico

SQL Self JOIN Example

The following SQL statement matches customers that are from the same city:

Example

SELECT A.CustomerName AS CustomerName1,

B.CustomerName AS CustomerName2, A.City

FROM Customers A, Customers B

WHERE A.CustomerID <> B.CustomerID

AND A.City = B.City

ORDER BY A.City;

What is Natural Join in Oracle?

 The join is based on all the columns in the two tables that have the same name and

data types.

 The join creates, by using the NATURAL JOIN keywords.

 It selects rows from the two tables that have equal values in all matched columns.

 When specifying columns that are involved in the natural join, do not qualify the

column name with a table name or table alias.

 Syntax
SELECT table1.column, table2.column

FROM table1

NATURAL JOIN table2;

Where table1, table2 are the name of the tables participating in joining.

Example: Oracle Natural Joins
In this example, the LOCATIONS table is joined to the COUNTRY table by the country_id

column, which is the only column of the same name in both tables. If other common columns

were present, the join would have used them all.

SQL Code:
SQL> SELECT postal_code, city,

 2 region_id, country_name

 3 FROM locations

 4 NATURAL JOIN countries;

Sample Output:

POSTAL_CODE CITY REGION_ID COUNTRY_NAME

------------ ------------------------------ ---------- -------------------------

00989 Roma 1 Italy

10934 Venice 1 Italy

1689 Tokyo 3 Japan

6823 Hiroshima 3 Japan

26192 Southlake 2 United States of America

DATABASE MANAGEMENT SYSTEM UNIT-4

Compiled By: Dr. Mehul Patel Page 9 of 17

Natural Joins with a WHERE Clause
You can implement additional restrictions on a natural join using a WHERE clause. In the

previous example the LOCATIONS table was joined to the DEPARTMENT table by the

COUNTRY_ID column, now you can limit the rows of output to those with a location_id

greater than 2000.

SQL Code:
SQL> SELECT postal_code, city,

 2 region_id, country_name

 3 FROM locations

 4 NATURAL JOIN countries

 5 WHERE location_id>2000;

Sample Output:

POSTAL_CODE CITY REGION_ID COUNTRY_NAME

------------ ------------------------------ ---------- -------------------

490231 Bombay 3 India

2901 Sydney 3 Australia

540198 Singapore 3 Singapore

Oracle Cross Join (Cartesian Products)

The CROSS JOIN specifies that all rows from first table join with all of the rows of second

table. If there are "x" rows in table1 and "y" rows in table2 then the cross join result set have

x*y rows. It normally happens when no matching join columns are specified.

In simple words you can say that if two tables in a join query have no join condition, then the

Oracle returns their Cartesian product.

1. SELECT *

2. FROM table1

3. CROSS JOIN table2;

Or
1. SELECT * FROM table1, table2

Both the above syntax are same and used for Cartesian product. They provide similar result

after execution.

Image representation of cross join

DATABASE MANAGEMENT SYSTEM UNIT-4

Compiled By: Dr. Mehul Patel Page 10 of 17

Oracle Cross Join Example
Let's take two tables "customer" and "supplier".

Customer table detail
1. CREATE TABLE "CUSTOMER"

2. ("CUSTOMER_ID" NUMBER,

3. "FIRST_NAME" VARCHAR2(4000),

4. "LAST_NAME" VARCHAR2(4000)

5.)

6. /

Supplier table detail
1. CREATE TABLE "SUPPLIER"

2. ("SUPPLIER_ID" NUMBER,

3. "FIRST_NAME" VARCHAR2(4000),

4. "LAST_NAME" VARCHAR2(4000)

5.)

6. /

Execute this query

1. SELECT * FROM customer,supplier

What is view ?

View is the simply subset of table which are stored logically in a database means a view is a

virtual table in the database whose contents are defined by a query.

To the database user, the view appears just like a real table, with a set of named columns and

rows of data. SQL creates the illusion of the view by giving the view a name like a table

name and storing the definition of the view in the database.

Views are used for security purpose in databases,views restricts the user from viewing

certain column and rows means by using view we can apply the restriction on accessing the

particular rows and columns for specific user. Views display only those data which are

mentioned in the query, so it shows only data which is returned by the query that is defined at

the time of creation of the View.

Advantages of views

Security

Each user can be given permission to access the database only through a small set of views

that contain the specific data the user is authorized to see, thus restricting the user's access to

stored data

Query Simplicity
A view can draw data from several different tables and present it as a single table, turning

multi-table queries into single-table queries against the view.

DATABASE MANAGEMENT SYSTEM UNIT-4

Compiled By: Dr. Mehul Patel Page 11 of 17

Structural simplicity
Views can give a user a "personalized" view of the database structure, presenting the database

as a set of virtual tables that make sense for that user.

Consistency

A view can present a consistent, unchanged image of the structure of the database, even if the

underlying source tables are split, restructured, or renamed.

Data Integrity

If data is accessed and entered through a view, the DBMS can automatically check the data to

ensure that it meets the specified integrity constraints.

Logical data independence.

 View can make the application and database tables to a certain extent independent. If there is

no view, the application must be based on a table. With the view, the program can be

established in view of above, to view the program with a database table to be separated.

Disadvantages of views

Performance

Views create the appearance of a table, but the DBMS must still translate queries against the

view into queries against the underlying source tables. If the view is defined by a complex,

multi-table query then simple queries on the views may take considerable time.

Update restrictions

When a user tries to update rows of a view, the DBMS must translate the request into an

update on rows of the underlying source tables. This is possible for simple views, but more

complex views are often restricted to read-only.

About Views
A view is a logical representation of another table or combination of tables. A view derives

its data from the tables on which it is based. These tables are called base tables. Base tables

might in turn be actual tables or might be views themselves. All operations performed on a

view actually affect the base table of the view. You can use views in almost the same way as

tables. You can query, update, insert into, and delete from views, just as you can standard

tables.

Views can provide a different representation (such as subsets or supersets) of the data that

resides within other tables and views. Views are very powerful because they allow you to

tailor the presentation of data to different types of users.

The following statement creates a view on a subset of data in the emp table:

CREATE VIEW sales_staff AS

 SELECT empno, ename, deptno

 FROM emp

 WHERE deptno = 10

 WITH CHECK OPTION CONSTRAINT sales_staff_cnst;

DATABASE MANAGEMENT SYSTEM UNIT-4

Compiled By: Dr. Mehul Patel Page 12 of 17

The query that defines the sales_staff view references only rows in department 10.

Furthermore, the CHECK OPTION creates the view with the constraint

(named sales_staff_cnst) that INSERT and UPDATE statements issued against the view

cannot result in rows that the view cannot select. For example, the

following INSERT statement successfully inserts a row into the emp table by means of

the sales_staff view, which contains all rows with department number 10:

INSERT INTO sales_staff VALUES (7584, 'OSTER', 10);

However, the following INSERT statement returns an error because it attempts to insert a

row for department number 30, which cannot be selected using the sales_staff view:

INSERT INTO sales_staff VALUES (7591, 'WILLIAMS', 30);

The view could have been constructed specifying the WITH READ ONLY clause, which

prevents any updates, inserts, or deletes from being done to the base table through the view.

If no WITH clause is specified, the view, with some restrictions, is inherently updatable.

Join Views
You can also create views that specify more than one base table or view in the FROM clause.

These are called join views. The following statement creates the division1_staffview that

joins data from the emp and dept tables:

CREATE VIEW division1_staff AS

 SELECT ename, empno, job, dname

 FROM emp, dept

 WHERE emp.deptno IN (10, 30)

 AND emp.deptno = dept.deptno;

An updatable join view is a join view where UPDATE, INSERT, and DELETE operations

are allowed. See "Updating a Join View" for further discussion.

Expansion of Defining Queries at View Creation Time

When a view is created, Oracle Database expands any wildcard (*) in a top-level view query

into a column list. The resulting query is stored in the data dictionary; any subqueries are left

intact. The column names in an expanded column list are enclosed in quote marks to account

for the possibility that the columns of the base object were originally entered with quotes and

require them for the query to be syntactically correct.

As an example, assume that the dept view is created as follows:

CREATE VIEW dept AS SELECT * FROM scott.dept;

The database stores the defining query of the dept view as:

SELECT "DEPTNO", "DNAME", "LOC" FROM scott.dept;

Views created with errors do not have wildcards expanded. However, if the view is

eventually compiled without errors, wildcards in the defining query are expanded.

Creating Views with Errors

If there are no syntax errors in a CREATE VIEW statement, the database can create the view

even if the defining query of the view cannot be executed. In this case, the view is considered

"created with errors." For example, when a view is created that refers to a nonexistent table or

an invalid column of an existing table, or when the view owner does not have the required

privileges, the view can be created anyway and entered into the data dictionary. However, the

view is not yet usable.

To create a view with errors, you must include the FORCE clause of the CREATE

VIEW statement.

https://docs.oracle.com/cd/B28359_01/server.111/b28310/views001.htm#i1006232

DATABASE MANAGEMENT SYSTEM UNIT-4

Compiled By: Dr. Mehul Patel Page 13 of 17

Using Views in Queries
To issue a query or an INSERT, UPDATE, or DELETE statement against a view, you must

have the SELECT, INSERT, UPDATE, or DELETE object privilege for the view,

respectively, either explicitly or through a role.

Views can be queried in the same manner as tables. For example, to query

the Division1_staff view, enter a valid SELECT statement that references the view:

SELECT * FROM Division1_staff;

ENAME EMPNO JOB DNAME

--

CLARK 7782 MANAGER ACCOUNTING

KING 7839 PRESIDENT ACCOUNTING

MILLER 7934 CLERK ACCOUNTING

ALLEN 7499 SALESMAN SALES

WARD 7521 SALESMAN SALES

JAMES 7900 CLERK SALES

TURNER 7844 SALESMAN SALES

MARTIN 7654 SALESMAN SALES

BLAKE 7698 MANAGER SALES

With some restrictions, rows can be inserted into, updated in, or deleted from a base table

using a view. The following statement inserts a new row into the emp table using

the sales_staff view:

INSERT INTO sales_staff

 VALUES (7954, 'OSTER', 30);

Restrictions on DML operations for views use the following criteria in the order listed:

1. If a view is defined by a query that contains SET or DISTINCT operators,

a GROUP BY clause, or a group function, then rows cannot be inserted into, updated

in, or deleted from the base tables using the view.

2. If a view is defined with WITH CHECK OPTION, a row cannot be inserted into, or

updated in, the base table (using the view), if the view cannot select the row from the

base table.

3. If a NOT NULL column that does not have a DEFAULT clause is omitted from the

view, then a row cannot be inserted into the base table using the view.

4. If the view was created by using an expression, such as DECODE(deptno, 10,

"SALES", ...), then rows cannot be inserted into or updated in the base table using the

view.

The constraint created by WITH CHECK OPTION of the sales_staff view only allows rows

that have a department number of 30 to be inserted into, or updated in, the emp table.

Alternatively, assume that the sales_staff view is defined by the following statement (that is,

excluding the deptno column):

CREATE VIEW sales_staff AS

 SELECT empno, ename

 FROM emp

 WHERE deptno = 10

 WITH CHECK OPTION CONSTRAINT sales_staff_cnst;

Considering this view definition, you can update the empno or ename fields of existing

records, but you cannot insert rows into the emp table through the sales_staff view because

DATABASE MANAGEMENT SYSTEM UNIT-4

Compiled By: Dr. Mehul Patel Page 14 of 17

the view does not let you alter the deptno field. If you had defined a DEFAULT value of 10

on the deptno field, then you could perform inserts.

When a user attempts to reference an invalid view, the database returns an error message to

the user:

ORA-04063: view 'view_name' has errors

This error message is returned when a view exists but is unusable due to errors in its query

(whether it had errors when originally created or it was created successfully but became

unusable later because underlying objects were altered or dropped).

Updating a Join View

An updatable join view (also referred to as a modifiable join view) is a view that contains

more than one table in the top-level FROM clause of the SELECT statement, and is not

restricted by the WITH READ ONLY clause.

Introduction to PL/SQL
The PL/SQL programming language was developed by Oracle Corporation in the late 1980s

as procedural extension language for SQL and the Oracle relational database. Following are

certain notable facts about PL/SQL −

 PL/SQL is a completely portable, high-performance transaction-processing language.

 PL/SQL provides a built-in, interpreted and OS independent programming

environment.

 PL/SQL can also directly be called from the command-line SQL*Plus interface.

 Direct call can also be made from external programming language calls to database.

 PL/SQL's general syntax is based on that of ADA and Pascal programming language.

 Apart from Oracle, PL/SQL is available in Times Ten in-memory

database and IBM DB2.

Features of PL/SQL

PL/SQL has the following features −

 PL/SQL is tightly integrated with SQL.

 It offers extensive error checking.

 It offers numerous data types.

 It offers a variety of programming structures.

 It supports structured programming through functions and procedures.

 It supports object-oriented programming.

 It supports the development of web applications and server pages.

Advantages of PL/SQL

PL/SQL has the following advantages −

 SQL is the standard database language and PL/SQL is strongly integrated with SQL.

PL/SQL supports both static and dynamic SQL. Static SQL supports DML

operations and transaction control from PL/SQL block. PL/SQL allows sending an

entire block of statements to the database at one time. This reduces network traffic

and provides high performance for the applications.

 PL/SQL gives high productivity to programmers as it can query, transform, and

update data in a database.

 PL/SQL saves time on design and debugging by strong features, such as exception

handling, encapsulation, data hiding, and object-oriented data types.

 Applications written in PL/SQL are fully portable.

 PL/SQL provides high security level.

 PL/SQL provides access to predefined SQL packages.

 PL/SQL provides support for Object-Oriented Programming.

 PL/SQL provides support for developing Web Applications and Server Pages.

DATABASE MANAGEMENT SYSTEM UNIT-4

Compiled By: Dr. Mehul Patel Page 15 of 17

Introducing PL/SQL block structure

PL/SQL program units organize the code into blocks. A block without a name is known as an

anonymous block. The anonymous block is the simplest unit in PL/SQL. It is called

anonymous block because it is not saved in the Oracle database.

Let’s examine the PL/SQL block structure in greater detail.

PL/SQL Block Structure

The anonymous block has three basic sections that are the declaration, execution, and

exception handling. Only the execution section is mandatory and the others are optional.

 The declaration section allows you to define data types, structures, and variables. You

often declare variables in the declaration section by giving those names, data types, and

initial values.

 The execution section is required in a block structure and it must have at least one

statement. The execution section is the place where you put the execution code or

business logic code. You can use both procedural and SQL statements inside the

execution section.

 The exception handling section is starting with the EXCEPTION keyword. The

exception section is the place that you put the code to handle exceptions. You can

either catch or handle exceptions in the exception section.

Notice that the single forward slash (/) is a signal to instruct SQL*Plus to execute the

PL/SQL block.

http://www.plsqltutorial.com/plsql-exception/

DATABASE MANAGEMENT SYSTEM UNIT-4

Compiled By: Dr. Mehul Patel Page 16 of 17

PL/SQL Transaction Commit, Rollback, Savepoint, Autocommit
Oracle PL/SQL transaction oriented language. Oracle transactions provide a data integrity.

PL/SQL transaction is a series of SQL data manipulation statements that are work logical

unit. Transaction is an atomic unit all changes either committed or rollback.

At the end of the transaction that makes database changes, Oracle makes all the changes

permanent save or may be undone. If your program fails in the middle of a transaction,

Oracle detect the error and rollback the transaction and restoring the database.

You can use the COMMIT, ROLLBACK, SAVEPOINT, and SET TRANSACTION

command to control the transaction.

1. COMMIT: COMMIT command to make changes permanent save to a database

during the current transaction.

2. ROLLBACK: ROLLBACK command execute at the end of current transaction and

undo/undone any changes made since the begin transaction.

3. SAVEPOINT: SAVEPOINT command save the current point with the unique name

in the processing of a transaction.

4. AUTOCOMMIT: Set AUTOCOMMIT ON to execute COMMIT Statement

automatically.

5. SET TRANSACTION: PL/SQL SET TRANSACTION command set the transaction

properties such as read-write/read only access.

Commit
The COMMIT statement to make changes permanent save to a database during the current

transaction and visible to other users,

Commit Syntax

SQL>COMMIT [COMMENT "comment text"];

Commit comments are only supported for backward compatibility. In a future release commit

comment will come to a deprecated.

Commit Example

SQL>BEGIN

 UPDATE emp_information SET emp_dept='Web Developer'

 WHERE emp_name='Saulin';

 COMMIT;

END;

/

Rollback
The ROLLBACK statement ends the current transaction and undoes any changes made

during that transaction. If you make a mistake, such as deleting the wrong row from a table, a

rollback restores the original data. If you cannot finish a transaction because an exception is

raised or a SQL statement fails, a rollback lets you take corrective action and perhaps start

over.

ROLLBACK Syntax

SQL>ROLLBACK [To SAVEPOINT_NAME];

ROLLBACK Example

SQL>DECLARE

 emp_id emp.empno%TYPE;

BEGIN

 SAVEPOINT dup_found;

 UPDATE emp SET eno=1

https://www.way2tutorial.com/plsql/plsql-transaction.php#commit
https://www.way2tutorial.com/plsql/plsql-transaction.php#rollback
https://www.way2tutorial.com/plsql/plsql-transaction.php#savepoint
https://www.way2tutorial.com/plsql/plsql-transaction.php#autocommit
https://www.way2tutorial.com/plsql/plsql-transaction.php#set_transaction

DATABASE MANAGEMENT SYSTEM UNIT-4

Compiled By: Dr. Mehul Patel Page 17 of 17

 WHERE empname = 'Forbs ross'

EXCEPTION

 WHEN DUP_VAL_ON_INDEX THEN

 ROLLBACK TO dup_found;

END;

/

Savepoint
SAVEPOINT savepoint_names marks the current point in the processing of a transaction.

Savepoints let you rollback part of a transaction instead of the whole transaction.

SAVEPOINT Syntax

SQL>SAVEPOINT SAVEPOINT_NAME;

SAVEPOINT Example

SQL>DECLARE

 emp_id emp.empno%TYPE;

BEGIN

 SAVEPOINT dup_found;

 UPDATE emp SET eno=1

 WHERE empname = 'Forbs ross'

EXCEPTION

 WHEN DUP_VAL_ON_INDEX THEN

 ROLLBACK TO dup_found;

END;

/

Autocommit
No need to execute COMMIT statement every time. You just set AUTOCOMMIT ON to

execute COMMIT Statement automatically. It's automatic execute for each DML statement.

set auto commit on using following statement,

AUTOCOMMIT Example

SQL>SET AUTOCOMMIT ON;

You can also set auto commit off,

SQL>SET AUTOCOMMIT OFF;

Set Transaction
SET TRANSACTION statement is use to set transaction are read-only or both read write.

you can also assign transaction name.

SET TRANSACTION Syntax

SQL>SET TRANSACTION [READ ONLY | READ WRITE]

 [NAME 'transaction_name'];

Set transaction name using the SET TRANSACTION [...] NAME statement before you start

the transaction.

SET TRANSACTION Example

SQL>SET TRANSACTION READ WRITE NAME 'tran_exp';

