DATABASE MANAGEMENT SYSTEM UNIT-4

The SQL ANY and ALL Operators

The ANY and ALL operators are used with a WHERE or HAVING clause.

The ANY operator returns true if any of the subquery values meet the condition.
The ALL operator returns true if all of the subquery values meet the condition.
ANY Syntax

SELECT column_name(s)

FROM table_name

WHERE column_name operator ANY

(SELECT column_name FROM table_name WHERE condition);
ALL Syntax

SELECT column_name(s)

FROM table_name

WHERE column_name operator ALL

(SELECT column_name FROM table_name WHERE condition);

SQL ANY Examples

The ANY operator returns TRUE if any of the subquery values meet the condition.

The following SQL statement returns TRUE and lists the productnames if it finds ANY
records in the OrderDetails table that quantity = 10:

Example

SELECT ProductName

FROM Products

WHERE ProductID = ANY (SELECT ProductlD FROM OrderDetails WHERE Quantity
=10);

Example

SELECT ProductName

FROM Products

WHERE ProductID = ANY (SELECT ProductiD FROM OrderDetails WHERE Quantity
> 99);

SQL ALL Example

The ALL operator returns TRUE if all of the subquery values meet the condition.

The following SQL statement returns TRUE and lists the productnames if ALL the records in
the OrderDetails table has quantity = 10:

Example

SELECT ProductName

FROM Products

WHERE ProductID= ALL (SELECT ProductID FROM OrderDetails WHERE Quantity= 10)

Oracle Joins

Join is a query that is used to combine rows from two or more tables, views, or materialized
views. It retrieves data from multiple tables and creates a new table.

Join Conditions

There may be at least one join condition either in the FROM clause or in the WHERE clause
for joining two tables. It compares two columns from different tables and combines pair of
rows, each containing one row from each table, for which join condition is true.

Compiled By: Dr. Mehul Patel Page 1 of 17

DATABASE MANAGEMENT SYSTEM UNIT-4

Types of Joins
o Inner Joins (Simple Join)
o OQuter Joins
o Left Outer Join (Left Join)
o Right Outer Join (Right Join)
o Full Outer Join (Full Join)
Equijoins
Self Joins
Cross Joins (Cartesian Products)
Antijoins
Semijoins

O O O O O

SQL JOIN

A JOIN clause is used to combine rows from two or more tables, based on a related column
between them.

Let's look at a selection from the "Orders" table:

OrderID CustomerlD OrderDate

10308 2 1996-09-18

10309 1 1996-09-19

10310 3 1996-09-20

Then, look at a selection from the "Customers" table:

CustomerID CustomerName ContactName Country
1 Prakash Patel Mr. Sohil Germany
2 Sunidhi Chauhan Mr. Jay Mexico
3 Hemant Vyas Ms. Prabha Mexico

Then, we can create the following SQL statement (that contains an INNER JOIN), that
selects records that have matching values in both tables:

Example

SELECT Orders.OrderID, Customers.CustomerName, Orders.OrderDate

FROM Orders

INNER JOIN Customers ON Orders.CustomerID=Customers.CustomerID;

and it will produce something like this:

OrderID CustomerName OrderDate
10308 Sunidhi Chauhan 9/18/1996
10310 Hemant Vyas 11/27/1996
10309 Prakash Patel 12/16/1996
10308 Sunidhi Chauhan 11/15/1996
10310 Hemant Vyas 8/12/1996

Compiled By: Dr. Mehul Patel Page 2 of 17

DATABASE MANAGEMENT SYSTEM

UNIT-4

Different Types of SQL JOINs
Here are the different types of the JOINs in SQL.:

e (INNER) JOIN: Returns records that have matching values in both tables
e LEFT (OUTER) JOIN: Returns all records from the left table, and the matched

records from the right table

e« RIGHT (OUTER) JOIN: Returns all records from the right table, and the matched

records from the left table

e FULL (OUTER) JOIN: Returns all records when there is a match in either left or

right table

INNER JOIN LEFT JOIN

RIGHT JOIN FULL OUTER JOIN

SQL INNER JOIN Keyword

The INNER JOIN keyword selects records that have matching values in both tables.

INNER JOIN Syntax

SELECT column_name(s)

FROM tablel

INNER JOIN table2

ON tablel.column_name = table2.column_name;

INNER JOIN

Below is a selection from the "Orders" table:

OrderID CustomerlID EmployeelD
10308 2 7
10309 37 3

Compiled By: Dr. Mehul Patel

OrderDate ShipperID
1996-09-18 3
1996-09-19 1

Page 3 of 17

DATABASE MANAGEMENT SYSTEM UNIT-4

10310 77 8 1996-09-20 2
And a selection from the "Customers" table:

CustomerID CustomerName ContactName Address City PostalCode Country

1 Alfreds Futterkiste Maria Anders Obere Str. Berlin 12209 Germany
57
2 Ana Trujillo Ana Trujillo Avda. de la México 05021 Mexico
Emparedados y Constitucion D.F.
helados 2222
3 Antonio Moreno Antonio Mataderos México 05023 Mexico
Taqueria Moreno 2312 D.F.

SQL INNER JOIN Example

The following SQL statement selects all orders with customer information:

Example

SELECT Orders.OrderID, Customers.CustomerName

FROM Orders

INNER JOIN Customers ON Orders.CustomerID = Customers.CustomeriD;

JOIN Three Tables

The following SQL statement selects all orders with customer and shipper information:
Example

SELECT Orders.OrderID, Customers.CustomerName, Shippers.ShipperName

FROM ((Orders

INNER JOIN Customers ON Orders.CustomerID = Customers.CustomerID)

INNER JOIN Shippers ON Orders.ShipperID = Shippers.ShipperID);

SQL LEFT JOIN Keyword

The LEFT JOIN keyword returns all records from the left table (tablel), and the matched
records from the right table (table2). The result is NULL from the right side, if there is no
match.

LEFT JOIN Syntax

SELECT column_name(s)

FROM tablel

LEFT JOIN table2

ON tablel.column_name = table2.column_name;

Note: In some databases LEFT JOIN is called LEFT OUTER JOIN.

LEFT JOIN

Compiled By: Dr. Mehul Patel Page 4 of 17

DATABASE MANAGEMENT SYSTEM UNIT-4

Below is a selection from the "Customers" table:

CustomerID CustomerName ContactName Address City PostalCode Country
1 Alfreds Futterkiste ~ Maria Anders Obere Str. 57 Berlin 12209 Germany
2 Ana Trujillo Ana Trujillo Avda. de la México 05021 Mexico
Emparedados y Constitucion D.F.
helados 2222
3 Antonio Moreno Antonio Mataderos 2312 México 05023 Mexico
Taqueria Moreno D.F.

And a selection from the "Orders" table:

OrderID CustomerlID EmployeelD OrderDate ShipperID
10308 2 7 1996-09-18 3
10309 37 3 1996-09-19 1
10310 77 8 1996-09-20 2

SQL LEFT JOIN Example

The following SQL statement will select all customers, and any orders they might have:
Example

SELECT Customers.CustomerName, Orders.OrderlD

FROM Customers

LEFT JOIN Orders ON Customers.CustomerID = Orders.CustomerID

ORDER BY Customers.CustomerName;

SQL RIGHT JOIN Keyword

The RIGHT JOIN keyword returns all records from the right table (table2), and the matched
records from the left table (tablel). The result is NULL from the left side, when there is no
match.

RIGHT JOIN Syntax

SELECT column_name(s)

FROM tablel

RIGHT JOIN table2

ON tablel.column_name = table2.column_name;

Note: In some databases RIGHT JOIN is called RIGHT OUTER JOIN.

RIGHT JOIN

Below is a selection from the "Orders" table:

Compiled By: Dr. Mehul Patel Page 5 of 17

DATABASE MANAGEMENT SYSTEM UNIT-4

OrderID CustomerlID EmployeelD OrderDate ShipperID
10308 2 7 1996-09-18 3

10309 37 3 1996-09-19 1

10310 77 8 1996-09-20 2

And a selection from the "Employees” table:

EmployeelD LastName FirstName BirthDate Photo

1 Davolio Nancy 12/8/1968 EmpID1.pic
2 Fuller Andrew 2/19/1952 EmplD2.pic
3 Leverling Janet 8/30/1963 EmplD3.pic

SQL RIGHT JOIN Example

The following SQL statement will return all employees, and any orders they might have
placed:

Example

SELECT Orders.OrderID, Employees.LastName, Employees.FirstName

FROM Orders

RIGHT JOIN Employees ON Orders.EmployeelD = Employees.EmployeelD

ORDER BY Orders.OrderID;

SQL FULL OUTER JOIN Keyword

The FULL OUTER JOIN keyword return all records when there is a match in left (tablel) or
right (table2) table records.

Remarks: FULL OUTER JOIN and FULL JOIN are the same.
FULL OUTER JOIN Syntax

SELECT column_name(s)

FROM tablel

FULL OUTER JOIN table2

ON tablel.column_name = table2.column_name

WHERE condition;

FULL OUTER JOIN

Compiled By: Dr. Mehul Patel Page 6 of 17

DATABASE MANAGEMENT SYSTEM UNIT-4

Below is a selection from the "Customers" table:

CustomerID CustomerName ContactName Address City PostalCode Country

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany

2 Ana Trujillo Ana Trujillo Avda. de la México 05021 Mexico
Emparedados y Constitucion D.F.
helados 2222

3 Antonio Moreno Antonio Mataderos México 05023 Mexico
Taqueria Moreno 2312 D.F.

And a selection from the "Orders" table:

OrderID CustomerlD EmployeelD OrderDate ShipperlID

10308 2 7 1996-09-18 3

10309 37 3 1996-09-19 1

10310 77 8 1996-09-20 2

SQL FULL OUTER JOIN Example

The following SQL statement selects all customers, and all orders:

SELECT Customers.CustomerName, Orders.OrderID
FROM Customers

FULL OUTER JOIN Orders ON Customers.CustomerlD=0rders.CustomerID

ORDER BY Customers.CustomerName;

SQL Self JOIN

A self JOIN is a regular join, but the table is joined with itself.
Self JOIN Syntax

SELECT column_name(s)

FROM tablel T1, tablel T2

WHERE condition;

T1 and T2 are different table aliases for the same table.

Demo Database
In this tutorial we will use the well-known Northwind sample database.
Below is a selection from the "Customers" table:

Custo CustomerName ContactName Address City Postal Country
merID Code
1 Alfreds Maria Anders Obere Str. 57 Berlin 12209 Germany

Futterkiste

Compiled By: Dr. Mehul Patel Page 7 of 17

DATABASE MANAGEMENT SYSTEM UNIT-4

2 Ana Trujillo Ana Trujillo Avda. de la México 05021 Mexico
Emparedados y Constitucion D.F.
helados 2222

3 Antonio Moreno Antonio Moreno Mataderos ~ Meéxico 05023 Mexico
Taqueria 2312 D.F.

SQL Self JOIN Example

The following SQL statement matches customers that are from the same city:
Example

SELECT A.CustomerName AS CustomerNamel,

B.CustomerName AS CustomerName2, A.City

FROM Customers A, Customers B

WHERE A.CustomerlID <> B.CustomerID

AND A.City = B.City

ORDER BY A.City;

What is Natural Join in Oracle?

e The join is based on all the columns in the two tables that have the same name and
data types.
e The join creates, by using the NATURAL JOIN keywords.
o It selects rows from the two tables that have equal values in all matched columns.
e When specifying columns that are involved in the natural join, do not qualify the
column name with a table name or table alias.
Syntax
SELECT tablel.column, table2.column
FROM tablel
NATURAL JOIN table2;
Where tablel, table2 are the name of the tables participating in joining.
Example: Oracle Natural Joins
In this example, the LOCATIONS table is joined to the COUNTRY table by the country id
column, which is the only column of the same name in both tables. If other common columns
were present, the join would have used them all.

SQL Code:

SQL> SELECT postal_code, city,
2 region_id, country_name
3 FROM locations
4 NATURAL JOIN countries;

Sample Output:

POSTAL_CODE CITY REGION_ID COUNTRY_NAME
00989 Roma 1 Italy

10934 Venice 1 ltaly

1689 Tokyo 3 Japan

6823 Hiroshima 3 Japan

26192 Southlake 2 United States of America

Compiled By: Dr. Mehul Patel Page 8 of 17

™=

DATABASE MANAGEMENT SYSTEM UNIT-4

Natural Joins with a WHERE Clause
You can implement additional restrictions on a natural join using a WHERE clause. In the
previous example the LOCATIONS table was joined to the DEPARTMENT table by the
COUNTRY_ID column, now you can limit the rows of output to those with a location_id
greater than 2000.
SQL Code:
SQL> SELECT postal_code, city,

2 region_id, country_name

3 FROM locations

4 NATURAL JOIN countries

5 WHERE location_id>2000;

Sample Output:

POSTAL_CODE CITY REGION_ID COUNTRY_NAME
490231 Bombay 3 India

2901 Sydney 3 Australia

540198 Singapore 3 Singapore

Oracle Cross Join (Cartesian Products)

The CROSS JOIN specifies that all rows from first table join with all of the rows of second
table. If there are "x" rows in tablel and "y" rows in table2 then the cross join result set have
x*y rows. It normally happens when no matching join columns are specified.

In simple words you can say that if two tables in a join query have no join condition, then the
Oracle returns their Cartesian product.

SELECT *

FROM tablel

CROSS JOIN table2;

Or

SELECT * FROM tablel, table2

Both the above syntax are same and used for Cartesian product. They provide similar result
after execution.

Image representation of cross join

Compiled By: Dr. Mehul Patel Page 9 of 17

oo E

SurwLdE

DATABASE MANAGEMENT SYSTEM UNIT-4

Oracle Cross Join Example

Let's take two tables "customer™ and "supplier".

Customer table detail

CREATE TABLE "CUSTOMER"
("CUSTOMER_ID" NUMBER,
"FIRST_NAME" VARCHAR2(4000),
"LAST_NAME" VARCHAR2(4000)

)
/

Supplier table detail

CREATE TABLE "SUPPLIER"
("SUPPLIER_ID" NUMBER,
"FIRST_NAME" VARCHAR2(4000),
"LAST_NAME" VARCHAR2(4000)

)
/

Execute this query

. SELECT * FROM customer,supplier

What is view ?

View is the simply subset of table which are stored logically in a database means a view is a
virtual table in the database whose contents are defined by a query.

To the database user, the view appears just like a real table, with a set of named columns and
rows of data. SQL creates the illusion of the view by giving the view a name like a table
name and storing the definition of the view in the database.

Views are used for security purpose in databases,views restricts the user from viewing
certain column and rows means by using view we can apply the restriction on accessing the
particular rows and columns for specific user. Views display only those data which are
mentioned in the query, so it shows only data which is returned by the query that is defined at
the time of creation of the View.

Advantages of views

Security

Each user can be given permission to access the database only through a small set of views
that contain the specific data the user is authorized to see, thus restricting the user's access to
stored data

Query Simplicity

A view can draw data from several different tables and present it as a single table, turning
multi-table queries into single-table queries against the view.

Compiled By: Dr. Mehul Patel Page 10 of 17

DATABASE MANAGEMENT SYSTEM UNIT-4

Structural simplicity
Views can give a user a "personalized” view of the database structure, presenting the database
as a set of virtual tables that make sense for that user.

Consistency
A view can present a consistent, unchanged image of the structure of the database, even if the
underlying source tables are split, restructured, or renamed.

Data Integrity

If data is accessed and entered through a view, the DBMS can automatically check the data to
ensure that it meets the specified integrity constraints.

Logical data independence.

View can make the application and database tables to a certain extent independent. If there is
no view, the application must be based on a table. With the view, the program can be
established in view of above, to view the program with a database table to be separated.

Disadvantages of views
Performance

Views create the appearance of a table, but the DBMS must still translate queries against the
view into queries against the underlying source tables. If the view is defined by a complex,
multi-table query then simple queries on the views may take considerable time.

Update restrictions

When a user tries to update rows of a view, the DBMS must translate the request into an
update on rows of the underlying source tables. This is possible for simple views, but more
complex views are often restricted to read-only.

About Views

A view is a logical representation of another table or combination of tables. A view derives
its data from the tables on which it is based. These tables are called base tables. Base tables
might in turn be actual tables or might be views themselves. All operations performed on a
view actually affect the base table of the view. You can use views in almost the same way as
tables. You can query, update, insert into, and delete from views, just as you can standard
tables.

Views can provide a different representation (such as subsets or supersets) of the data that
resides within other tables and views. Views are very powerful because they allow you to
tailor the presentation of data to different types of users.

The following statement creates a view on a subset of data in the emp table:

CREATE VIEW sales_staff AS
SELECT empno, ename, deptno
FROM emp
WHERE deptno = 10
WITH CHECK OPTION CONSTRAINT sales_staff _cnst;

Compiled By: Dr. Mehul Patel Page 11 of 17

DATABASE MANAGEMENT SYSTEM UNIT-4

The query that defines the sales staff view references only rows in department 10.
Furthermore, the CHECK OPTION creates the view with the constraint
(named sales_staff cnst) that INSERT and UPDATE statements issued against the view
cannot result in rows that the view cannot select. For example, the
following INSERT statement successfully inserts a row into the emp table by means of
the sales_staff view, which contains all rows with department number 10:

INSERT INTO sales_staff VALUES (7584, 'OSTER', 10);

However, the following INSERT statement returns an error because it attempts to insert a
row for department number 30, which cannot be selected using the sales_staff view:

INSERT INTO sales_staff VALUES (7591, 'WILLIAMS', 30);

The view could have been constructed specifying the WITH READ ONLY clause, which
prevents any updates, inserts, or deletes from being done to the base table through the view.
If no WITH clause is specified, the view, with some restrictions, is inherently updatable.

Join Views

You can also create views that specify more than one base table or view in the FROM clause.
These are called join views. The following statement creates the divisionl_staffview that
joins data from the emp and dept tables:

CREATE VIEW divisionl_staff AS
SELECT ename, empno, job, dname
FROM emp, dept
WHERE emp.deptno IN (10, 30)

AND emp.deptno = dept.deptno;

An updatable join view is a join view where UPDATE, INSERT, and DELETE operations
are allowed. See "Updating a Join View" for further discussion.

Expansion of Defining Queries at View Creation Time

When a view is created, Oracle Database expands any wildcard (*) in a top-level view query
into a column list. The resulting query is stored in the data dictionary; any subqueries are left
intact. The column names in an expanded column list are enclosed in quote marks to account
for the possibility that the columns of the base object were originally entered with quotes and
require them for the query to be syntactically correct.

As an example, assume that the dept view is created as follows:

CREATE VIEW dept AS SELECT * FROM scott.dept;
The database stores the defining query of the dept view as:
SELECT "DEPTNO", "DNAME", "LOC" FROM scott.dept;

Views created with errors do not have wildcards expanded. However, if the view is
eventually compiled without errors, wildcards in the defining query are expanded.

Creating Views with Errors

If there are no syntax errors in a CREATE VIEW statement, the database can create the view
even if the defining query of the view cannot be executed. In this case, the view is considered
"created with errors." For example, when a view is created that refers to a nonexistent table or
an invalid column of an existing table, or when the view owner does not have the required
privileges, the view can be created anyway and entered into the data dictionary. However, the
view is not yet usable.

To create a view with errors, you must include the FORCE clause of the CREATE
VIEW statement.

Compiled By: Dr. Mehul Patel Page 12 of 17

https://docs.oracle.com/cd/B28359_01/server.111/b28310/views001.htm#i1006232

DATABASE MANAGEMENT SYSTEM UNIT-4

Using Views in Queries

To issue a query or an INSERT, UPDATE, or DELETE statement against a view, you must
have the SELECT, INSERT, UPDATE, or DELETE object privilege for the view,
respectively, either explicitly or through a role.

Views can be queried in the same manner as tables. For example, to query
the Divisionl_staff view, enter a valid SELECT statement that references the view:

SELECT * FROM Divisionl_staff;

ENAME EMPNO JOB DNAME
CLARK 7782 MANAGER ACCOUNTING
KING 7839 PRESIDENT ACCOUNTING
MILLER 7934 CLERK ACCOUNTING
ALLEN 7499 SALESMAN SALES

WARD 7521 SALESMAN SALES
JAMES 7900 CLERK SALES

TURNER 7844 SALESMAN SALES
MARTIN 7654 SALESMAN SALES
BLAKE 7698 MANAGER SALES

With some restrictions, rows can be inserted into, updated in, or deleted from a base table
using a view. The following statement inserts a new row into the emp table using
the sales_staff view:

INSERT INTO sales_staff
VALUES (7954, 'OSTER', 30):

Restrictions on DML operations for views use the following criteria in the order listed:

1. If a view is defined by a query that contains SET or DISTINCT operators,
a GROUP BY clause, or a group function, then rows cannot be inserted into, updated
in, or deleted from the base tables using the view.

2. If a view is defined with WITH CHECK OPTION, a row cannot be inserted into, or
updated in, the base table (using the view), if the view cannot select the row from the
base table.

3. If aNOT NULL column that does not have a DEFAULT clause is omitted from the
view, then a row cannot be inserted into the base table using the view.

4. If the view was created by using an expression, such as DECODE(deptno, 10,
"SALES", ...), then rows cannot be inserted into or updated in the base table using the
view.

The constraint created by WITH CHECK OPTION of the sales_staff view only allows rows
that have a department number of 30 to be inserted into, or updated in, the emp table.
Alternatively, assume that the sales_staff view is defined by the following statement (that is,
excluding the deptno column):

CREATE VIEW sales_staff AS
SELECT empno, ename
FROM emp
WHERE deptno = 10
WITH CHECK OPTION CONSTRAINT sales_staff _cnst;

Considering this view definition, you can update the empno or ename fields of existing
records, but you cannot insert rows into the emp table through the sales_staff view because

Compiled By: Dr. Mehul Patel Page 13 of 17

DATABASE MANAGEMENT SYSTEM UNIT-4

the view does not let you alter the deptno field. If you had defined a DEFAULT value of 10
on the deptno field, then you could perform inserts.

When a user attempts to reference an invalid view, the database returns an error message to
the user:

ORA-04063: view 'view_name' has errors

This error message is returned when a view exists but is unusable due to errors in its query
(whether it had errors when originally created or it was created successfully but became
unusable later because underlying objects were altered or dropped).

Updating a Join View

An updatable join view (also referred to as a modifiable join view) is a view that contains
more than one table in the top-level FROM clause of the SELECT statement, and is not
restricted by the WITH READ ONLY clause.

Introduction to PL/SQL

The PL/SQL programming language was developed by Oracle Corporation in the late 1980s
as procedural extension language for SQL and the Oracle relational database. Following are
certain notable facts about PL/SQL —

o PL/SQL is a completely portable, high-performance transaction-processing language.

e PL/SQL provides a built-in, interpreted and OS independent programming
environment.
PL/SQL can also directly be called from the command-line SQL*Plus interface.
Direct call can also be made from external programming language calls to database.
PL/SQL's general syntax is based on that of ADA and Pascal programming language.
Apart from Oracle, PL/SQL is available inTimes Ten in-memory
database and IBM DB2.
Features of PL/SQL
PL/SQL has the following features —

o PL/SQL is tightly integrated with SQL.

« It offers extensive error checking.

o It offers numerous data types.

o It offers a variety of programming structures.

It supports structured programming through functions and procedures.
It supports object-oriented programming.
o It supports the development of web applications and server pages.
Advantages of PL/SQL
PL/SQL has the following advantages —

e SQL is the standard database language and PL/SQL is strongly integrated with SQL.
PL/SQL supports both static and dynamic SQL. Static SQL supports DML
operations and transaction control from PL/SQL block. PL/SQL allows sending an
entire block of statements to the database at one time. This reduces network traffic
and provides high performance for the applications.

e PL/SQL gives high productivity to programmers as it can query, transform, and
update data in a database.

e PL/SQL saves time on design and debugging by strong features, such as exception

handling, encapsulation, data hiding, and object-oriented data types.
Applications written in PL/SQL are fully portable.

PL/SQL provides high security level.

PL/SQL provides access to predefined SQL packages.

PL/SQL provides support for Object-Oriented Programming.

PL/SQL provides support for developing Web Applications and Server Pages.

Compiled By: Dr. Mehul Patel Page 14 of 17

DATABASE MANAGEMENT SYSTEM UNIT-4

Introducing PL/SQL block structure

PL/SQL program units organize the code into blocks. A block without a name is known as an
anonymous block. The anonymous block is the simplest unit in PL/SQL. It is called
anonymous block because it is not saved in the Oracle database.

Let’s examine the PL/SQL block structure in greater detail.

Header

15

Declaration Section
BEGIN

Execution Section

EXCEPTION

Exception Section

END:

PL/SQL Block Structure

The anonymous block has three basic sections that are the declaration, execution, and
exception handling. Only the execution section is mandatory and the others are optional.

« The declaration section allows you to define data types, structures, and variables. You
often declare variables in the declaration section by giving those names, data types, and
initial values.

e The execution section is required in a block structure and it must have at least one
statement. The execution section is the place where you put the execution code or
business logic code. You can use both procedural and SQL statements inside the
execution section.

e The exception handling section is starting with the EXCEPTION keyword. The
exception section is the place that you put the code to handle exceptions. You can
either catch or handle exceptions in the exception section.

Notice that the single forward slash (/) is a signal to instruct SQL*Plus to execute the
PL/SQL block.

Compiled By: Dr. Mehul Patel Page 15 of 17

http://www.plsqltutorial.com/plsql-exception/

DATABASE MANAGEMENT SYSTEM UNIT-4

PL/SQL Transaction Commit, Rollback, Savepoint, Autocommit
Oracle PL/SQL transaction oriented language. Oracle transactions provide a data integrity.
PL/SQL transaction is a series of SQL data manipulation statements that are work logical
unit. Transaction is an atomic unit all changes either committed or rollback.
At the end of the transaction that makes database changes, Oracle makes all the changes
permanent save or may be undone. If your program fails in the middle of a transaction,
Oracle detect the error and rollback the transaction and restoring the database.
You can use the COMMIT, ROLLBACK, SAVEPOINT, and SET TRANSACTION
command to control the transaction.
1. COMMIT: COMMIT command to make changes permanent save to a database
during the current transaction.
2. ROLLBACK: ROLLBACK command execute at the end of current transaction and
undo/undone any changes made since the begin transaction.
3. SAVEPOINT: SAVEPOINT command save the current point with the unique name
in the processing of a transaction.
4. AUTOCOMMIT: Set AUTOCOMMIT ON to execute COMMIT Statement
automatically.
5. SET TRANSACTION: PL/SQL SET TRANSACTION command set the transaction
properties such as read-write/read only access.

Commit
The COMMIT statement to make changes permanent save to a database during the current
transaction and visible to other users,
Commit Syntax
SQL>COMMIT [COMMENT "comment text"];
Commit comments are only supported for backward compatibility. In a future release commit
comment will come to a deprecated.
Commit Example
SQL>BEGIN

UPDATE emp_information SET emp_dept="Web Developer'

WHERE emp_name='Saulin’;

COMMIT;
END;
/

Rollback

The ROLLBACK statement ends the current transaction and undoes any changes made
during that transaction. If you make a mistake, such as deleting the wrong row from a table, a
rollback restores the original data. If you cannot finish a transaction because an exception is
raised or a SQL statement fails, a rollback lets you take corrective action and perhaps start
over.
ROLLBACK Syntax
SQL>ROLLBACK [To SAVEPOINT_NAME];
ROLLBACK Example
SQL>DECLARE

emp_id emp.empno%TYPE;
BEGIN

SAVEPOINT dup_found;

UPDATE emp SET eno=1

Compiled By: Dr. Mehul Patel Page 16 of 17

https://www.way2tutorial.com/plsql/plsql-transaction.php#commit
https://www.way2tutorial.com/plsql/plsql-transaction.php#rollback
https://www.way2tutorial.com/plsql/plsql-transaction.php#savepoint
https://www.way2tutorial.com/plsql/plsql-transaction.php#autocommit
https://www.way2tutorial.com/plsql/plsql-transaction.php#set_transaction

DATABASE MANAGEMENT SYSTEM UNIT-4

WHERE empname = 'Forbs ross'
EXCEPTION
WHEN DUP_VAL_ON_INDEX THEN
ROLLBACK TO dup_found;
END;
/

Savepoint
SAVEPOINT savepoint_names marks the current point in the processing of a transaction.
Savepoints let you rollback part of a transaction instead of the whole transaction.
SAVEPOINT Syntax
SQL>SAVEPOINT SAVEPOINT_NAME;
SAVEPOINT Example
SQL>DECLARE

emp_id emp.empno%TYPE;
BEGIN

SAVEPOINT dup_found;

UPDATE emp SET eno=1

WHERE empname = 'Forbs ross'

EXCEPTION

WHEN DUP_VAL_ON_INDEX THEN

ROLLBACK TO dup_found;

END;
/

Autocommit

No need to execute COMMIT statement every time. You just set AUTOCOMMIT ON to
execute COMMIT Statement automatically. It's automatic execute for each DML statement.
set auto commit on using following statement,

AUTOCOMMIT Example

SQL>SET AUTOCOMMIT ON;

You can also set auto commit off,

SQL>SET AUTOCOMMIT OFF;

Set Transaction
SET TRANSACTION statement is use to set transaction are read-only or both read write.
you can also assign transaction name.
SET TRANSACTION Syntax
SQL>SET TRANSACTION [READ ONLY | READ WRITE]
[NAME ‘transaction_name'];
Set transaction name using the SET TRANSACTION [...] NAME statement before you start
the transaction.
SET TRANSACTION Example
SQL>SET TRANSACTION READ WRITE NAME 'tran_exp';

Compiled By: Dr. Mehul Patel Page 17 of 17

