Object Oriented Programming — 1 (USO3CBCAZ23) (Unit-1)

C.P.PATEL & F.H.SHAH COMMERCE COLLEGE
(MANAGED BY SARDAR PATEL EDUCATION TRUST)
BCA, BBA (ITM) & PGDCA PROGRAMME:

BCA Semester 111 -Paper Code: USO3CBCA23

UNIT 1- Object Oriented Programming (OOP) Concepts and Introduction to C++

Sr. No. | Topics

1 | Object Oriented Programming (OOP) Concepts and Introduction to C++
2 | _ Structured programming vs. object oriented programming

_ Basic OOP concepts : objects , classes , encapsulation , data hiding ,

3 | inheritance, polymorphism

_ Introduction to C++: structure of a C++ program , data types , variables,

4 | constants, expressions, statements and operators

5| _ Usage of header files

_ Control flow statements : if else, for loop, while loop, do while

6 | loop, switch, break and continue

Structured programming vs. object oriented programming
Structured Programming Language

1.
2.
3.

4.
S.
6

Follow top-down approach to program design.

Data and Functions don’t tide with each other.

Large programs are divided into smaller self contained program segment known as
functions.

Data moves openly around the system from function to function.

Functions are dependent so reusability is not possible

. Structured Programming is designed which focuses on process/ logical structure and

then data required for that process.

Structured Programming is also known as Modular Programming and a subset
of procedural programming language.

Structured Programming is less secure as there is no way of data hiding.

Structured Programming can solve moderately complex programs.

. Structured Programming provides less reusability, more function dependency and less

abstraction and less flexibility.

Object Oriented Programming Language

NoookrwbdPE

0

Follow bottom-up approach in program design.

Functions and data are tied together.

Programs are divided into entity called Objects.

Data is hidden and can’t be accessed by the external world.

Functions are not dependent so reusability is possible.

Object Oriented Programming is designed which focuses on data.

Object Oriented Programming supports inheritance, encapsulation,
abstraction, polymorphism, etc.

Object Oriented Programming is more secure as having data hiding feature.

Object Oriented Programming can solve any complex programs.

Compiled By: Dr. Mehul Patel Page 1

http://www.learnvern.com/

Object Oriented Programming — 1 (USO3CBCAZ23) (Unit-1)

10. Object Oriented Programming provides more reusability, less function dependency
and more abstraction and more flexibility.

Basic OOPs concepts:

Objects:

Obijects are the basic runtime entities in an object-oriented system. They may represent a
person, a place, a bank account, a table of data or any item that the program has to handle.
They may also represent user defined data such as vectors, time and lists. Programming
problem is analyzed in terms of objects and the nature of communication between them.
Program objects should be chosen such that they match closely with the real-world objects.
Objects take up space in the memory and have as associated address like a record in Pascal,
or a structure in C.

When a program is executed, the objects interact by sending messages to one another. For
example, if customer and account are two objects in a program, then the customer object
may send a message to the account object requesting for the bank balance. Each object
contains data, and code to manipulate the data. Objects can interact without having to know
details of each other's data or Code. It is sufficient to know the type of message accepted, and
the type of response returned by the objects. Although different authors represent them
differently, Fig. 1.7 shows two notations that are popularly used in object oriented analysis
and design.

| Object: STUDENT | STUDENT
—
| DATA | | Total
Name | ,
‘ Date-of-birth [
‘ s [-
. ‘ | Average
! =5
l FUNCTIONS [‘
| Totai pnlee——t
l
| Average ' 'L Dispiay
Display ‘ —\ —
ng 1.7 =1 oy ""'o‘.t,"» of 'l')‘.'r".':w"'-‘.'f.‘\’." in oot
Classes

We just mentioned that objects contain data, and code to manipulate that data. The entire set
of data and code of an object can be made a user-defined data type with the help of a class.
In fact, objects are variables of the type class. Once a class has been defined, we can create
any number of objects belonging to that class. Each object is associated with the data of type
class with which they are created. A class is thus a collection of objects of similar type. For
example, mango, apple and orange are members of the class fruit Classes are user-defined

Compiled By: Dr. Mehul Patel Page 2

Object Oriented Programming — 1 (USO3CBCAZ23) (Unit-1)

data types and behave like the built-in types of a programming language. The syntax used to
create an object is no different than the syntax used to create an integer object in C. If fruit
bas been defined as a class, then the statement will create an object mango belonging to the
class fruit.

fruit mango;

Data Abstraction and Encapsulation

The wrapping up of data and functions into a single unit (called class) is known as
Encapsulation. Data encapsulation is the most striking feature of a class. The data is not
accessible to the outside world, and only those functions which are wrapped in the class can
access it. These functions provide the interface between the object's data and the program.
This insulation of the data from direct access by the program is called data hiding or
information hiding. Abstraction refers to the act of representing essential features without
including the background details or explanations. Classes use the concept of abstraction and
are defined as a list of abstract attributes such as size, weight and cost and functions to
operate on these attributes. They encapsulate all the essential properties of the objects that are
to be created. The attributes are sometimes called data numbers because they hold
information. The functions that operate on these data are sometimes called methods or
member functions. Since the classes use the concept of data abstraction, they are known as
Abstract Data Types (ADT).

Inheritance

Inheritance is the process by which objects of one class acquire the properties of objects of
another class. It supports the concept of hierarchical classification. For example, the bird
'robin’ is a part of the class 'flying bird" which is again a part of the class 'bird". The principle
behind this sort of division is that each derived class shares common characteristics with the
class from which it. is derived as illustrated in Fig. 1.8

Compiled By: Dr. Mehul Patel Page 3

Object Oriented Programming — 1 (USO3CBCAZ23) (Unit-1)

Bird

Altnbutes
Feathers
Lay eggs
= V- ‘ e AL
Flying Bird {Nonfiying Bird
Aftributes Attnbutes
Y ¢ ST \J— IR s/
Robin Swallow ' Penguin ‘ Kiwi
Attributes Attributes | Attributes | Attributes
|
Fig. 1.8 Progerd

In OOP, the concept of inheritance provides the idea of reusability. This means that we can
add additional features to an existing class without modifying it. This is possible by deriving
a new class from the existing one. The new class will have the combined features of both the
classes. The real appeal and power of the inheritance mechanism is that it allows the
programmer to reuse a class that is almost, but not exactly, what he wants, and to tailor the
class in such a way that it does not introduce any undesirable side-effects into the rest of the
classes. Note that each subclass defines only those features that are unique to it. Without the
use of classification, each class would have to explicitly include all of its features.

Polymorphism

Polymorphism is another important OOP concept. Polymorphism. a Greek term, means the
ability to take more than one form. An operation may exhibit different behaviours in different
instances. The behaviour depends upon the types of data used in the operation. For example,
consider the operation of addition. For two numbers, the operation will generate a sum if the
operands are strings then the operation would produce a third string by concatenation. The
process of making an operator to exhibit different behaviours in different instances is known
as operator overloading. Figure 1.9 illustrates chat a single function name can be used to
handle different number and different types of arguments. This is something similar to a
particular word having several different meanings depending on the context. Using a single
function name to perform different types of tasks is known as function overloading.
Polymorphism plays an important role in allowing objects having different internal structures

Compiled By: Dr. Mehul Patel Page 4

Object Oriented Programming — 1 (USO3CBCAZ23)

(Unit-1)

to share the same external interface. This means that general class of operations may be
accessed in the same manner even though specific actions associated with each operation
may differ. Polymorphism is extensively used in implementing inheritance.

Shape

Draw ()

b .

Circle object Box object

Triangle object

Draw (circie) Draw (box)

DA S

f

Draw (triangie)

Fig. 1.9 & Polymorphismt

Introduction to C++:
Structure of a C++ program:

A typical C++ program would contain four sections as shown in Figure. These sections may
be placed in separate rode files and then compiled independently or jointly.

includa fles

Class deciaration

Maember functions definitions

Main function program

It is a common practice to organize a program into three separate files. The class declarations
are placed in a header file and the definitions of member functions go into another file. This
approach enables the programmer to separate the abstract specification of the interface (class
definition) from the implementation details (member functions definition). Finally, the main

Compiled By: Dr. Mehul Patel

Page 5

Object Oriented Programming — 1 (USO3CBCAZ23) (Unit-1)

program that uses the class is placed in a third file which 11includes' the previous two files as
well as any other files required. This approach is based on the concept of client-.server model
as shown in Fig. 2.4. The class definition including the member functions constitute the
server that provides services to the main program known as client. The client uses the server

through the public interface of the class.

Server

Main function program Client

Compiled By: Dr. Mehul Patel Page 6

Object Oriented Programming — 1 (USO3CBCAZ23)

(Unit-1)

Basic Data Types

C++ Data Types l

i ! L.
User-defined type Bullt-in type Derived type
—— — — ‘ - - r 15 |
siructurs array
union function
class pointer
snurmearation referancn
» = = '—_ Y
Integral type Void | Floating type
. i o PG et S, T
Int char float | ‘

Variables in C++

What are Variables?

Variables are used in C++ where you will need to store any type of values within a program
and whose value can be changed during the program execution. These variables can be
declared in various ways each having different memory requirements and storing capability.
Variables are the name of memory locations that are allocated by compilers, and the
allocation is done based on the data type used for declaring the variable.

Variable Definition in C++

A variable definition means that the programmer writes some instructions to tell the compiler
to create the storage in a memory location. The syntax for defining variables is:

Syntax:

data_type variable_name;
data_type variable_name, variable_name, variable_name;

Compiled By: Dr. Mehul Patel Page 7

Object Oriented Programming — 1 (USO3CBCAZ23) (Unit-1)

Here data_type means the valid C++ data type which includes int, float, double, char,
wchar_t, bool and variable list is the lists of variable names to be declared which is separated
by commas.

Example:

[* variable definition */int width, height, age;
char letter;

float area;

double d;

Variable Initialization in C++

Variables are declared in the above example, but none of them has been assigned any value.
Variables can be initialized, and the initial value can be assigned along with their declaration.

Syntax:

data_type variable_name = value;

Example:

/* variable definition and initialization */int width, height=5, age=32;
char letter="A";

float area;

double d;

/* actual initialization */width = 10;

area = 26.5;

There are some rules that must be in your knowledge to work with C++ variables.
Rules of Declaring variables in C++

1. A variable name can consist of Capital letters A-Z, lowercase letters a-z, digits 0-9,
and the underscore character.

2. The first character must be a letter or underscore.

3. Blank spaces cannot be used in variable names.

4. Special characters like #, $ are not allowed.

5. C++ keywords cannot be used as variable names.

6. Variable names are case-sensitive.

7. A variable name can be consisting of 31 characters only if we declare a variable more
than one characters compiler will ignore after 31 characters.

8. Variable type can be bool, char, int, float, double, void or wchar t.

Compiled By: Dr. Mehul Patel Page 8

https://www.w3schools.in/cplusplus-tutorial/data-types/

Object Oriented Programming — 1 (USO3CBCAZ23) (Unit-1)

Example:

#include <iostream>
using namespace std;
int main()

t
intx =5;
inty=2;
int Result;
Result =x *;
cout << Result;

Constants - Type of Constants in C++

Constants refer to fixed values that the program may not alter. Constants can be of any of the
basic data types. The way each constant is represented depends upon its type. Constants are
also called literals.

Definition: ™A constant value is the one which does not change during the execution of a
program."

Constant uses the secondary storage area. Constants are those quantities whose value does not
vary during the execution of the program i.e. constant has fixed value. Constants in every
language are the same. For example, in the C++ language some valid constant are: 53.7 , -
44.4, +83.65, "Dinesh”, 'M’, "2013" , "\n" etc.

In C++ language constants are of two types:

1. Numeric Constant

2. Non-Numeric Constant (Character Constant)
These are further sub-divided into more categories.

Numeric Constant

These have numeric value having combination of sequence of digits i.e. from 0-9 as alone
digit or combination of 0-9 with or without decimal point (precision value) having positive or
negative sign. These are further sub-divided into two categories as:

(i) Integer Numeric Constant
(i) Float or Real Numeric Constant
(i) Integer Numeric Constant

An Integer Numeric Constant is a sequence of digits (combination of 0-9 digits without any
decimal point or without precision), optionally preceded by a plus or minus sign.

There are 3 types of integer numeric constant namely decimal integer, octal integers and
hexadecimal integer.

Compiled By: Dr. Mehul Patel Page 9

Object Oriented Programming — 1 (USO3CBCAZ23) (Unit-1)

(a) Decimal Integer Numeric Constant: These have no decimal point in it and are either be
alone or be the combination of 0-9 digits. These have either +ve or -ve sign. For example:
1214, -1321, 10,254, -78, +99 etc.

(b) Octal Integer Numeric Constant: These consist of combination of digits from 0-7 with
positive or negative sign. It has leading with 0 or O (upper or lower case) means Octal or
octal. For example: 0317,003, -045 etc.

(c) Hexadecimal Integer Numeric Constant: These have hexadecimal data. It has leading ox,
OX, Ox or x, X. These have combination of 0-9 and A-F (a-f) or alone. The letters a-f or A-F
represents the numbers 10-15. For example: 0x232, 0x92, 0OXACD, OXAEF etc.

(i) Float or Real Numeric Constant

Float Numeric Constants consists of a fractional part in their representation; Integer constants
are inadequate to represent quantities that vary continuously. These quantities are represented
by numbers containing fractional parts like 26.082.

Examples of real constants are: 0.0026, -0.97, 435.29, +487.0, 3.4E-2, 4.5E5

A floating-point constant consists of a sequence of decimal digits, a decimal point, and
another sequence of decimal digits. A minus sign can precede the value to denote a negative
value. Either the sequence of digits before the decimal point or after the decimal point can be
omitted, but not both.

Float Numeric constants are further divided into two parts. One is Mantissa Part and the other
is Exponent Part.

(a) Mantissa part: The part without E and having a decimal point is called Mantissa Real part
e. Q. 45, -22.43, 0.5 etc. it is also called without exponent part.

(b) Exponent part: The exponent part has an E within it. It is also called a scientific notation.
Here E has base value 10. it computes the power. For example: 4.2x102 can be written as
4.2E2, 4.2xI10-5 can be written as 4.2E- 5.-Similarly some more valid real numeric constant
are as: 54.73 E -4,51.9 E +11 etc.

Character Constant

Character constants have either a single character or group of characters or a character with
backslash used for special purpose. These are further subdivided into three types:

Q) Single Character Constant
(i) String Character Constant
(iii) Backslash Character Constant

(i) Single Character Constant

Single Character constants are enclosed between single quotes(’). For example, 'a' and '%' are
both character constants. So these are also called single quote character constant.

For example: 'a’, 'M', '5', '+', '1" etc. are some valid single character constant.

Compiled By: Dr. Mehul Patel Page 10

Object Oriented Programming — 1 (USO3CBCAZ23) (Unit-1)

(i) String Character Constant

C++ supports another type of constant: the string. A string is a set of characters enclosed in
double quotes ("). For example: "Punar Deep" is a string.

You must not confuse strings with characters. A single character constant is enclosed in
single quotes, as in 'a'. However, "a" is a string containing only one letter.

For example: "Dinesh”, "Hello", "2013", "2013-2020", "5+3", "?+!" etc. are some valid string
character constant. These are used for printing purpose or display purpose in the C++
program's output statements. These can also be used for assigning the string data to the
character (string) type variables.

(iii) Backslash Character Constants

Enclosing character constants in single quotes works for most printing characters. A few,
however, such as the carriage return, can't be. For this reason, C++ includes the special
backslash character constants, shown below, so that you may easily enter these special
characters as constants. These are also referred to as escape sequences. You should use the
backslash codes instead of their ASCII equivalents to help ensure portability. These are used
for special purpose in the C++ language. These are used in output statements like cout etc.

What is Expressions in C++?

A combination of variables, constants and operators that represents a computation forms an
expression. Depending upon the type of operands involved in an expression or the result
obtained after evaluating expression, there are different categories of an expression. These
categories of an expression are discussed here. Constant expressions: The expressions that
comprise only constant values are called constant expressions. Some examples of constant
expressions are 20, ‘a‘and 2/5+30 .

» Integral expressions: The expressions that produce an integer value as output after
performing all types of conversions are called integral expressions. For example, x, 6*x-y
and 10 +int (5.0) are integral expressions. Here, x and yare variables of type into

* Float expressions: The expressions that produce floating-point value as output after
performing all types of conversions are called float expressions. For example, 9.25, x-y and
9+ float (7) are float expressions. Here, x 'and yare variables of type float.

* Relational or Boolean expressions: The expressions that produce a bool type value, that is,
either true or false are called relational or Boolean expressions. For example, x + y<100, m
+ n==a-b and a>=b + c .are relational expressions.

* Logical expressions: The expressions that produce a bool type value after combining two
or more relational expressions are called logical expressions. For example, x==5 &&m==
and y>x | I m<=n are logical expressions.

* Bitwise expressions: The expressions which manipulate data at bit level are called bitwise
expressions. For example, a >> 4 and b<< 2 are bitwise expressions.

* Pointer expressions: The expressions that give address values as output are
called pointer expressions. For example, &x, ptr and -ptr are pointer expressions. Here, X is
a variable of any type and ptr is a pointer.

* Special assignment expressions: An expression can be categorized further depending upon
the way the values are assigned to the variables.

Compiled By: Dr. Mehul Patel Page 11

http://ecomputernotes.com/cpp/introduction-to-oop/expressions-in-cpp

Object Oriented Programming — 1 (USO3CBCAZ23) (Unit-1)

What is Statements in C++?

Statements are fragments of the C++ program that are executed in sequence. The body of any
function is a sequence of statements. For example:

int main()

{
intn=1; /I declaration statement
n=n+1; I/ expression statement
std::cout << "n =" << n << '\n"; // expression statement
return O; /I return statement

}

C++ includes the following types of statements:

1) expression statements;
2) compound statements;
3) selection statements;
4) iteration statements;

5) jump statements;

6) declaration statements;

7) try blocks;

What is Operators in C++?
An operator is a symbol that tells the compiler to perform specific mathematical or logical
manipulations. C++ is rich in built-in operators and provide the following types of operators
e Arithmetic Operators
o Relational Operators
e Logical Operators
e Bitwise Operators
« Assignment Operators
e Misc Operators
This chapter will examine the arithmetic, relational, logical, bitwise, assignment and other

operators one by one.
Arithmetic Operators

There are following arithmetic operators supported by C++ language —
Assume variable A holds 10 and variable B holds 20, then

Compiled By: Dr. Mehul Patel Page 12

http://en.cppreference.com/w/cpp/io/cout

Object Oriented Programming — 1 (USO3CBCAZ23) (Unit-1)

Show Examples

Operator Description Example

+ Adds two operands A + B will give 30
- Subtracts second operand from the first A - B will give -10
* Multiplies both operands A * B will give 200
/ Divides numerator by de-numerator B/ A will give 2

% Modulus Operator and remainder of after an B % A will give 0

integer division

++ Increment operator, increases integer value by A++ will give 11
one

- Decrement operator, decreases integer value by A-- will give 9
one

Relational Operators

There are following relational operators supported by C++ language Assume variable A
holds 10 and variable B holds 20, then —

Show Examples

Operator Description Example

== Checks if the values of two operands are equal (A == B) is not true.
or not, if yes then condition becomes true.

I= Checks if the values of two operands are equal (A !'= B) is true.
or not, if values are not equal then condition
becomes true.

> Checks if the value of left operand is greater (A > B) is not true.
than the value of right operand, if yes then
condition becomes true.

< Checks if the value of left operand is less than (A < B) is true.
the value of right operand, if yes then condition
becomes true.

Compiled By: Dr. Mehul Patel Page 13

https://www.tutorialspoint.com/cplusplus/cpp_arithmatic_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_increment_decrement_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_increment_decrement_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_relational_operators.htm

Object Oriented Programming — 1 (USO3CBCAZ23) (Unit-1)

>= Checks if the value of left operand is greater (A >= B) is not true.
than or equal to the value of right operand, if
yes then condition becomes true.

<= Checks if the value of left operand is less than (A <= B) is true.
or equal to the value of right operand, if yes
then condition becomes true.

Logical Operators
There are following logical operators supported by C++ language.
Assume variable A holds 1 and variable B holds 0, then —

Show Examples

Operator Description Example

&& Called Logical AND operator. If both the (A && B)is false.
operands are non-zero, then condition becomes
true.

| Called Logical OR Operator. If any of the two (A || B) is true.
operands is non-zero, then condition becomes
true.

! Called Logical NOT Operator. Use to reverses the (A && B) is true.
logical state of its operand. If a condition is true,
then Logical NOT operator will make false.

Bitwise Operators
Bitwise operator works on bits and perform bit-by-bit operation. The truth tables for &, |,

and ” are as follows —

p q p&q Pl pP™a
0 0 0 0 0
0 1 0 1 1
1 1 1 1 0
1 0 0 1 1

Assume if A =60; and B = 13; now in binary format they will be as follows —
A =0011 1100

Compiled By: Dr. Mehul Patel Page 14

https://www.tutorialspoint.com/cplusplus/cpp_logical_operators.htm

Object Oriented Programming — 1 (USO3CBCAZ23) (Unit-1)

B = 0000 1101

A&B =0000 1100

A|B =0011 1101

A”B = 0011 0001

~A =1100 0011

The Bitwise operators supported by C++ language are listed in the following table. Assume
variable A holds 60 and variable B holds 13, then —

Show Examples

Operator Description Example

& Binary AND Operator copies a bit
to the result if it exists in both (A & B) will give 12 which is 0000 1100
operands.

Binary OR Operator copies a bit if (A | B) will give 61 which is 0011 1101
it exists in either operand.

A Binary XOR Operator copies the
bit if it is set in one operand but (A " B) will give 49 which is 0011 0001
not both.

~ Binary Ones Complement (~A) will give -61 which is 1100 0011
Operator is unary and has the in 2's complement form due to a signed
effect of 'flipping’ bits. binary number.

<< Binary Left Shift Operator. The
left operands value is moved left
by the number of bits specified by
the right operand.

A << 2 will give 240 which is 1111 0000

>> Binary Right Shift Operator. The
left operands value is moved right
by the number of bits specified by
the right operand.

A >> 2 will give 15 which is 0000 1111

Assignment Operators
There are following assignment operators supported by C++ language —

Show Examples

Compiled By: Dr. Mehul Patel Page 15

https://www.tutorialspoint.com/cplusplus/cpp_bitwise_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_assignment_operators.htm

Object Oriented Programming — 1 (USO3CBCAZ23)

(Unit-1)

Operator

0=

<<=

>>=

Description

Simple assignment operator, Assigns
values from right side operands to left
side operand.

Add AND assignment operator, It
adds right operand to the left operand
and assign the result to left operand.

Subtract AND assignment operator, It
subtracts right operand from the left
operand and assign the result to left
operand.

Multiply AND assignment operator,
It multiplies right operand with the
left operand and assign the result to
left operand.

Divide AND assignment operator, It
divides left operand with the right
operand and assign the result to left
operand.

Modulus AND assignment operator,
It takes modulus using two operands
and assign the result to left operand.
Left shift AND assignment operator.
Right shift AND assignment operator.

Bitwise AND assignment operator.

Bitwise exclusive OR and assignment
operator.

Bitwise inclusive OR and assignment
operator.

Misc Operators

Example

C = A + B will assign value of A + B
into C

C+=AisequivalenttoC=C+A

C-=AisequivalenttoC=C-A

C*=AisequivalenttoC=C*A

C/=AisequivalenttoC=C/A

C %=AisequivalenttoC=C% A

C<<=2issameasC=C<<?2
C>>=2jssameasC=C>>2

C&=2issameasC=C &2

C/Mr=2issameasC=C"2

Cl=2issameasC=C|2

The following table lists some other operators that C++ supports.

Compiled By: Dr. Mehul Patel

Page 16

Object Oriented Programming — 1 (USO3CBCAZ23) (Unit-1)

Sr. Operator & Description

No

! sizeof
sizeof operator returns the size of a variable. For example, sizeof(a), where ‘a’
is integer, and will return 4.

2 - _
Condition ? X : Y
Conditional operator (?). If Condition is true then it returns value of X
otherwise returns value of Y.

3
Comma operator causes a sequence of operations to be performed. The value
of the entire comma expression is the value of the last expression of the
comma-separated list.

4
. (dot) and -> (arrow)
Member operators are used to reference individual members of classes,
structures, and unions.

> Cast
Casting operators convert one data type to another. For example, int(2.2000)
would return 2.

6 &
Pointer operator & returns the address of a variable. For example &a; will
give actual address of the variable.

7

*

Pointer operator * is pointer to a variable. For example *var; will pointer to a

variable var.

Usages of Header Files in C++

Header files contain definitions of Functions and Variables, which is imported or used
into any C++ program by using the pre-processor #include statement. Header file have an
extension ".h" which contains C++ function declaration and macro definition.

Compiled By: Dr. Mehul Patel Page 17

https://www.tutorialspoint.com/cplusplus/cpp_sizeof_operator.htm
https://www.tutorialspoint.com/cplusplus/cpp_conditional_operator.htm
https://www.tutorialspoint.com/cplusplus/cpp_comma_operator.htm
https://www.tutorialspoint.com/cplusplus/cpp_member_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_casting_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_pointer_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_pointer_operators.htm

Object Oriented Programming — 1 (USO3CBCAZ23) (Unit-1)

Each header file contains information (or declarations) for a particular group of functions.
Like stdio.h header file contains declarations of standard input and output functions
available in C++ which is used for get the input and print the output. Similarly, the header
file math.h contains declarations of mathematical functions available in C++.

Types of Header Files in C++

o System header files: It is comes with compiler.

o User header files: It is written by programmer.
Why need of header files

When we want to use any function in our C++ program then first we need to import their
definition from C++ library, for importing their declaration and definition we need to
include header file in program by using #include. Header file include at the top of any

C++ program.

For example if we use clrscr() in C++ program, then we need to include, conio.h header
file, because in conio.h header file definition of clrscr() (for clear screen) is written in

conio.h header file.

Syntax

#include<conio.h>

See another simple example why use header files

Syntax
#include<iostream>

int main()

{

using namespace std;
cout << "Hello, world!" << endl;
return O;

¥

In above program print message on scree hello world! by using cout but we don't define

cout here actually already cout has been declared in a header file called iostream.

Compiled By: Dr. Mehul Patel Page 18

Object Oriented Programming — 1 (USO3CBCAZ23)

(Unit-1)

Decision Making Statement

Decision making statement is depending on the condition block need to be executed or

not which is decided by condition.

If the condition is "true" statement block will be executed, if condition is "false" then

statement block will not be executed.

In this section we are discuss about if-then (if), if-then-else (if else), and switch statement.

In C++ language there are three types of decision making statement.

o if
o if-else
e switch

if-then Statement

if-then is most basic statement of Decision making statement. It tells to program to

execute a certain part of code only if particular condition or test is true.

Syntax

if(condition)

Example

#include<iostream.h>
#include<conio.h>

void main()

{
int a=10;
if(a<10)
{

cout<<"a is less than 10";

}
getch();

Compiled By: Dr. Mehul Patel

Page 19

Object Oriented Programming — 1 (USO3CBCAZ23) (Unit-1)

Output

ais less than 10

e Constructing the body of "if" statement is always optional, Create the body when we
are having multiple statements.

« For asingle statement, it is not required to specify the body.

« If the body is not specified, then automatically condition part will be terminated with

next semicolon (;).
else

It is a keyword, by using this keyword we can create a alternative block for if part. Using
else is always optional i.e, it is recommended to use when we are having alternate block
of condition.

In any program among if and else only one block will be executed. When if condition is
false then else part will be executed, if part is executed then automatically else part will be
ignored.

Syntax

if(condition)

Compiled By: Dr. Mehul Patel Page 20

Object Oriented Programming — 1 (USO3CBCAZ23) (Unit-1)

Example

#include<iostream.h>
#include<conio.h>

void main()

{

int age=40;
if(a<18)

{

cout<<"you are child";

}

else

{

cout<<"you are young";

¥
getch();

}

Output

you are young

Output
Good morning

Switch Case in C++

The switch statement in C++ language is used to execute the code from multiple
conditions or case. It is same like if else-if ladder statement.
A switch statement work with byte, short, char and int primitive data type, it also works

with enumerated types and string.
Syntax

switch(expression or variable)

{

case value:
[Istatements

Compiled By: Dr. Mehul Patel Page 21

Object Oriented Programming — 1 (USO3CBCAZ23)

(Unit-1)

Il any number of case statements
break; //optional

default: //optional

/Istatements

}

Rules for apply switch

e The switch expression must be of integer or character type.

« With switch statement use only byte, short, int, char data type.
e With switch statement not use float data type.

e You can use any number of case statements within a switch.

e The case value can be used only inside the switch statement.

« Value for a case must be same as the variable in switch.

Valid statement for switch
Switch Case in Example C++

int x;
byte y;
short z;
char a,b;
/Il Invalid

Syntax

switch(ch)
{

case 1.
statement 1;
break;

case 2:
statement 2;
break;

}

In this ch can be integer or char and can not be float or any other data type.

Compiled By: Dr. Mehul Patel

Page 22

Object Oriented Programming — 1 (USO3CBCAZ23) (Unit-1)

Example of Switch Case in C++

#include<iostream.h>
#include<conio.h>

void main()

{

int ch;

clrscr();

cout<<"Enter any number (1 to 7)";
cin>>ch;

switch(ch)

{

case 1:

cout<<"Today is Monday";
break;

case 2:

cout<<"Today is Tuesday";
break;

case 3:

cout<<"Today is Wednesday";
break;

case 4:

cout<<"Today is Thursday";
break;

case 5:

cout<<"Today is Friday";
break;

case 6:

cout<<"Today is Saturday";
break;

case 7:

cout<<"Today is Sunday";
break;

default:

cout<<"Only enter value 1 to 7";

}
getch();

}

Compiled By: Dr. Mehul Patel Page 23

Object Oriented Programming — 1 (USO3CBCAZ23) (Unit-1)

Output

Enter any number (1 to 7): 5
Today is Friday

Note: In switch statement default is optional but when we use this in switch default is

executed at last whenever all cases are not satisfied the condition.
Example of Switch without break in C++

#include<iostream.h>
#include<conio.h>

void main()

{

int ch;

clrscr();

cout<<"Enter any number (1 to 7)";
cin>>ch;

switch(ch)

{

case 1:

cout<<"Today is Monday";
case 2:

cout<<"Today is Tuesday";
case 3:

cout<<"Today is Wednesday";
case 4:

cout<<"Today is Thursday";
case 5:

cout<<"Today is Friday";
case 6:

cout<<"Today is Saturday";
case 7:

cout<<"Today is Sunday";
default:

cout<<"Only enter value 1 to 7";

}
getch();

Compiled By: Dr. Mehul Patel Page 24

Object Oriented Programming — 1 (USO3CBCAZ23) (Unit-1)

Output

Enter any number (1 to 7): 4
Today is Thursday

Today is Friday

Today is Saturday

Today is Sunday

Note: In switch statement when you not use break keyword after any statement then all
the case after matching case will be execute. In above code case 4 is match and after case

4 all case are execute from case-4 to case-7.
C++ program for calculator

Example Calculator

#include<iostream.h>
#include<conio.h>

void main()

{

char choice;

int a,b,res=0;

clrscr();

cout<<"Enter first value: ";
cin>>g;

cout<<"\n Enter operator: ";
choice=getch();

cout<<"\n Enter second value: ";
cin>>b;

switch(choice)
{
case '+"
res=a+b;
cout<<"Sum: " res;
break;
case -"

“UIHIJIITU DY. /I IVICHIUL T atcl I ayc paxe]

Object Oriented Programming — 1 (USO3CBCAZ23)

res=a-b;
cout<<"Difference: " res;
break;
case *"
res=a*b;
cout<<"Product: " res;
break;
case /"
res=a/b;
cout<<"Quotient: " res;
break;
default:
cout<<"Enter Valid Operator!™;

¥
getch();

}

Output

Enter First number: 6
Enter operator : +

Enter Second number: 10
Sum: 16

Control Flow Statement

(Unit-1)

Set of instructions given to the compiler to execute set of statements until condition

becomes false is called loops. The basic purpose of loop is code repetition that means

same code repeated again and again.

Why use Loop

Where need repetition of same code a number of times at that place use Loop in place of

writing more than one statements. The way of the repetition will be forms a circle that's

why repetition statements are called loops.

Advantage with looping statement

Reduce length of Code

take less memory space.

Compiled By: Dr. Mehul Patel

Page 26

Object Oriented Programming — 1 (USO3CBCAZ23) (Unit-1)

Types of Loops.

There are three type of Loops available in 'C' programming language.

e while loop
o forloop
o do-while

Difference Between Conditional and Looping Statement in C++

Conditional statement executes only once in the program where as looping statements

executes repeatedly several number of time.
While loop

In while loop First check the condition if condition is true then control goes inside the

loop body other wise goes outside the body. while loop will be repeats in clock wise

direction.
Syntax

Assignment;
while(condition)

{

Statements;

Increment/decrement (++ or --);

}

Note: If while loop condition never false then loop become infinite loop.
Example of while loop

#include<iostream.h>
#include<conio.h>

void main()

{

inti;

clrscr();

i=1;

while(i<b)

{
cout<<endl<<i;
i++:

Compiled By: Dr. Mehul Patel Page 27

Object Oriented Programming — 1 (USO3CBCAZ23) (Unit-1)

getch();

Output

A W DN -

For loop
For loop contains 3 parts.

o Initialization

« Condition

o lteration

for(a=35; a<=10; a++)
Initilization Condition 'mcrement (++)

or
Decrement (-)

e When we are working with for loop always execution process will start from
initialization block.

« After initialization block control will pass to condition block, if condition is evaluated
as true then control will pass to statement block.

o After execution of the statement block control will pass to iteration block, from
iteration it will pass back to the condition.

o Always repetitions will happen beginning condition, statement block and iteration
only.

« Initialization block will be executed only once when we are entering into the loop first

time.

Compiled By: Dr. Mehul Patel Page 28

Object Oriented Programming — 1 (USO3CBCAZ23) (Unit-1)

e When we are working with for loop everything is optional but mandatory to place 2

semicolons (; ;)
Example

while() /I Error
for(;;) I/ valid

Example of for loop

#include<iostream.h>
#include<conio.h>

void main()

{

inti;

clrscr();
for(i=1;i<5;i++)
{

cout<<endl<<i;

¥
getch();

}

Output

A W DN

o when we are working with the for loop if condition part is not given then it will
repeats infinite times, because condition part will replace it non-zero. So it is always
true like.
for(; 1;)

o Whenever we are working with for loop it repeats in antilock direction.

« In for loop also rechecking process will be occurred that is before execution of the

statement block, condition part will evaluated.

Compiled By: Dr. Mehul Patel Page 29

Object Oriented Programming — 1 (USO3CBCAZ23) (Unit-1)

Example
while(0) /I no repetition
for(;0;) /I it will repeats 1 time

In for loop whenever the condition part is replace with constant zero then it will repeats 1

st become nember of instance become 1 at the time of compilation.

Example

inti;

i=0;

while(i) /I no repetition
for(;;) /I no repetition

Always execution process is faster than while loop when we are working with for.
do-while

In do-while loop post checking of the statement block condition part will be executed.
Syntax

do
{

Statements;

Increment/decrement (++ or --)

}
while();

When use Do-While Loop

When we need to repeat the statement block atleast 1 time then we use do-while loop.
Example of do-while Loop

Example

#include<iostream.h>
#include<conio.h>

void main()

{

Object Oriented Programming — 1 (USO3CBCAZ23) (Unit-1)

inti;
clrscr();
i=1;

do

{

cout<<endl<<i;
i++;
}
while(i<5);
getch();

}

Output
1
2
3
4

C++ break Statement
The break; statement terminates a loop (for, while and do..while loop) and a switch
statement immediately when it appears.

Syntax of break

break;

In real practice, break statement is almost always used inside the body of conditional
statement (if...else) inside the loop.

Compiled By: Dr. Mehul Patel Page 31

https://www.programiz.com/cpp-programming/for-loop
https://www.programiz.com/cpp-programming/do-while-loop
https://www.programiz.com/cpp-programming/switch-case
https://www.programiz.com/cpp-programming/switch-case
https://www.programiz.com/cpp-programming/switch-case

Object Oriented Programming — 1 (USO3CBCAZ23) (Unit-1)

How break statement works?

do {
while (test expression) { statement/s
statement/s if (test expression) {
if (test expression) { ————— break;
break; }
} statement/s
statement/s }
} while (test expression);
> —>

for (intial expression; test expression; update expression) {
statement/s
if (test expression) {

break;

}

statements/

}
>

NOTE: The break statment may also be used inside body of else statement.

Example 1: C++ break
C++ program to add all number entered by user until user enters 0.

/I C++ Program to demonstrate working of break statement

#include <iostream>
using namespace std;
int main() {
float number, sum = 0.0;

/] test expression is always true
while (true)

{

cout << "Enter a number: "';
cin >> number;

if (number !=0.0)
{

¥

else

{

sum += number;

/I terminates the loop if number equals 0.0
break;

Compiled By: Dr. Mehul Patel Page 32

Object Oriented Programming — 1 (USO3CBCAZ23) (Unit-1)

¥

cout << "'Sum =" << sum;

return O;
}
Output

Enter a number: 4
Enter a number: 3.4
Enter a number: 6.7
Enter a number: -4.5
Enter a number: 0
Sum =9.6

C++ continue Statement

It is sometimes necessary to skip a certain test condition within a loop. In such
case, continue; statement is used in C++ programming.

Syntax of continue

continue;

In practice, continue; statement is almost always used inside a conditional statement.

Working of continue Statement

do {

—» while (test expression) { statement/s
statement/s if (test expression) {
if (test expression) { —————— continue;

continue; }
} statement/s
statement/s }
} L while (test expression);

» for (intial expression; test expression; update expression) {
statement/s
if (test expression) {

continue;

}

statements/

Compiled By: Dr. Mehul Patel Page 33

Object Oriented Programming — 1 (USO3CBCAZ23) (Unit-1)

Example 2: C++ continue
C++ program to display integer from 1 to 10 except 6 and 9.

#include <iostream>
using namespace std;

int main()

{
for (inti=1;i<=10; ++i)

if (i==61i==9)
{

continue;

ky

cout << i << "\t";

ky

return O;
}
Output

1 2 3 4 5 7 8 10

In above program, when i is 6 or 9, execution of statement cout << i << "\t"; is skipped inside
the loop using continue; statement.

Compiled By: Dr. Mehul Patel Page 34

