Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

C.P.PATEL & F.H.SHAH COMMERCE COLLEGE
(MANAGED BY SARDAR PATEL EDUCATION TRUST)
BCA, BBA (ITM) & PGDCA PROGRAMME:

BCA Semester 111 -Paper Code: USO3CBCA23

UNIT 2- Input / Output, Arrays and Working with Classes

Sr. No. | Topics

Basic I/0 in C++

2 | Arrays in C++ : introduction, declaration, initialization of one , two and
multi-dimensional arrays, operations on arrays

3 | Working with strings : introduction, declaration, string manipulation
and arrays of string

Classes and objects in C++

Constructors : default, parameterized, copy, constructor overloading
and destructor

6 | Access specifies, implementing and accessing class members

7 | Working with objects : constant objects, nameless objects, live objects,
arrays of objects

Basic Input / Output in C++

=

o1 b~

The C++ standard libraries provide an extensive set of input/output capabilities. Very basic
and most common 1/O operations required for C++ programming. C++ 1/O occurs in
streams, which are sequences of bytes. If bytes flow from a device likes a keyboard, a disk
drive, or a network connection etc. to main memory, this is called input operation and if
bytes flow from main memory to a device likes a display screen, a printer, a disk drive, or a
network connection, etc., this is called output operation.

I/O Library Header Files

There are following header files important to C++ programs —

Sr.No Header File & Function and Description

1 <iostream>

This file defines the cin, cout, cerr and clog objects, which correspond to the
standard input stream, the standard output stream, the un-buffered standard error
stream and the buffered standard error stream, respectively.

The Standard Output Stream (cout)

The predefined object cout is an instance of ostream class. The cout object is said to be
"connected to" the standard output device, which usually is the display screen. The cout is

Compiled By: Dr. Mehul Patel Page 1 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

used in conjunction with the stream insertion operator, which is written as << which are two
less than signs as shown in the following example.

#include <iostream>
using namespace std;
int main()

{

char str[] = "Hello C++";
cout << "Value of str is : " << str << endl;

¥

When the above code is compiled and executed, it produces the following result —
Value of stris : Hello C++

The C++ compiler also determines the data type of variable to be output and selects the
appropriate stream insertion operator to display the value. The << operator is overloaded to
output data items of built-in types integer, float, double, strings and pointer values.

The insertion operator << may be used more than once in a single statement as shown above
and endl is used to add a new-line at the end of the line.

The Standard Input Stream (cin)

The predefined object cinis an instance of istream class. The cin object is said to be
attached to the standard input device, which usually is the keyboard. The cinis used in

conjunction with the stream extraction operator, which is written as >> which are two
greater than signs as shown in the following example.

#include <iostream>
using namespace std;
int main()

char name[50];

cout << "Please enter your name: ";

cin >> name;

cout << "Your name is: " << name << endl;

¥

When the above code is compiled and executed, it will prompt you to enter a name. You
enter a value and then hit enter to see the following result —

Please enter your name: cplusplus
Your name is: cplusplus

The C++ compiler also determines the data type of the entered value and selects the
appropriate stream extraction operator to extract the value and store it in the given variables.

Compiled By: Dr. Mehul Patel Page 2 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

The stream extraction operator >> may be used more than once in a single statement. To

request more than one datum you can use the following —
cin >> name >> age;
This will be equivalent to the following two statements —

cin >> name;
cin >> age;

Arrays in C++
An array is collection of items stored at continuous memory locations.

40 55 63 17 22 &8 89 a7 89

| O 1 2 3 A 5 [7 & | =-Arrayindices

Array Length =9
First Index=0
Last Index=8

Why do we need arrays?

We can use normal variables (v1, v2, v3, ..) when we have small number of objects, but if
we want to store large number of instances, it becomes difficult to manage them with
normal variables. The idea of array is to represent many instances in one variable.

Array declaration in C++:

Array Declaration in C

¥
r 1
/

Int a[3k; int a[3]={1, 2, 3); int a[3]=(}; int a[3]={ [0...1]=3 };
2192 | 451 [13918 NERE oo o 3 [3] o
intal31={1,1, 1% inta[3]={0}; inta[]={[0...1]=3 };
A o [o] o 3 | 3
inta[31={1};
HEET

We can declare an array by specifying its type and size or by initializing it or by both.

Compiled By: Dr. Mehul Patel Page 3 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

1. Array declaration by specifying size

/I Array declaration by specifying size
int arr1[10];

/I With recent C/C++ versions, we can also
/l declare an array of user specified size
intn=10;

intarr2[n];

2. Array declaration by initializing elements

/I Array declaration by initializing elements
intarr[] = { 10, 20, 30, 40 }
/I Compiler creates an array of size 4.
/l above is same as "int arr[4] = {10, 20, 30, 40}"

3. Array declaration by specifying size and initializing elements
/I Array declaration by specifying size and initializing
Il elements
intarr[6] = { 10, 20, 30, 40 }
/I Compiler creates an array of size 6, initializes first
Il 4 elements as specified by user and rest two elements as 0.
/l above is same as "int arr[] = {10, 20, 30, 40, 0, 0}"

Facts about Array in C/C++:
o Accessing Array Elements:
Array elements are accessed by using an integer index. Array index starts with 0 and
goes till size of array minus 1.

Array in C

array vari‘g\ble

N index of the element
to be accessed

AFFLO1];

Following are few examples.

#include <stdio.h>

int main()
{
int arr[5];
arr[0] = 5;
arr[2] = -10;
arr[3 /2] = 2; // this is same as arr[1] = 2

Compiled By: Dr. Mehul Patel Page 4 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

arr[3] = arr[0];
printf("%d %d %d %d", arr[0], arr[1], arr[2], arr[3]);

return O;

}
Output:
52-105

One Dimensional Array Program in C++

To print one dimensional array in C++ programming, you have to ask to the user to enter
array size and array elements to store all the array elements in one dimensional and then
print the array in one dimension using one for loop as shown here in the following
program.

C++ Programming Code for One Dimensional (1D) Array

Following C++ program ask to the user to enter the array size, then ask to enter the
element of the array to store the elements in the array, then finally display the array
element on the screen:

[* C++ Program - One Dimensional Array Program */

#include<iostream.h>

#include<conio.h>

void main()

{
clrscr();
int arr[50], n;
cout<<"How many element you want to store in the array ? ";
cin>>n;
cout<<"Enter "<<n<<" element to store in the array : ";
for(int i=0; i<n; i++)

{
¥

cout<<"The Elements in the Array is : \n";
for(i=0; i<n; i++)

{

ks
getch();

cin>>arr[i];

cout<<arr[i]<<" ",

¥

When the above C++ program is compile and executed, it will produce the following
result:

Compiled By: Dr. Mehul Patel Page 5 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

0 C:ATURBOC~1\Disk\TurboC3\S \]

How many element you want to store in the array 7 5
Entex» 5 element to store in the array =

23

34

45

56

The Elements in the Array is =
12 23 34 45 56

Two Dimensional Array Program in C++

Two dimensional (2D) array can be made in C++ programming language by using
two for loops, first is outer for loop and the second one is inner for loop. The
outer for loop is responsible for rows and the inner for loop is responsible for columns as
shown here in the following program.

C++ Programming Code for Two Dimensional (2D) Array

Following C++ program ask to the user to enter row and column size of the array then ask
to the user to enter array elements, and the program will display the array elements in two
dimensional (i.e., display array elements in row and column):

[* C++ Program - Two Dimensional Array Program */

#include<iostream.h>

#include<conio.h>

void main()

{
clrscr();
int arr[10][10], row, col, i, j;
cout<<"Enter number of row for Array (max 10) : ";
cin>>row;
cout<<"Enter number of column for Array (max 10) : ";
cin>>col;
cout<<"Now Enter "<<row<<"*"<<col<<" Array Elements : ";
for(i=0; i<row; i++)
{

for(j=0; j<col; j++)
cin>>arr[i][j];

}
}
cout<<"The Array is :\n";
for(i=0; i<row; i++)
{

for(j=0; j<col; j++)

Compiled By: Dr. Mehul Patel Page 6 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

{

cout<<arr[i][j]<<"";
¥
cout<<™\n";

¥
getch();

When the above C++ program is compile and executed, it will produce the following

result:
5 CATURBOC~1\Disk\ TurboC3\SOURCE\1000.EXE

EFntex» numbex» of »ow fox Axzrxay dmax 168> =
EFntex» numbex» of column fox» Axryxay dmax 18
Now Entex» 333 Axryray Elements =

he Axx»ay is =
2 3
= &
8 o

3
=3
=
S
-—
=
4
£y
1
<3
-—

Two-Dimensional Arrays

The simplest form of the multidimensional array is the two-dimensional array. A two-
dimensional array is, in essence, a list of one-dimensional arrays. To declare a two-

dimensional integer array of size x,y, you would write something as follows —

type arrayName [x][y 1;
Where type can be any valid C++ data type and arrayName will be a valid C++ identifier.
A two-dimensional array can be think as a table, which will have x number of rows and y

number of columns. A 2-dimensional array a, which contains three rows and four columns

can be shown as below —

Column 0 Column 1 Column 2 Column 3
Row 0 a[0][0] a[0][1] | a[0][2] a[0][3]
Row 1 a[1][0] a[1][1] a[1][2] a[1][3]
Row 2 af2][0] a[2][1] a[2][2] a[2][3]

Thus, every element in array a is identified by an element name of the form a[i][j], where
a is the name of the array, and i and j are the subscripts that uniquely identify each element
in a.

Compiled By: Dr. Mehul Patel Page 7 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

Initializing Two-Dimensional Arrays
Multidimensioned arrays may be initialized by specifying bracketed values for each row.

Following is an array with 3 rows and each row have 4 columns.

int a[3][4] = {

{0, 1, 2,3}, /* initializers for row indexed by 0 */
{4,5,6, 7}, /* initializers for row indexed by 1 */
{8, 9, 10, 11} /* initializers for row indexed by 2 */

h
The nested braces, which indicate the intended row, are optional. The following
initialization is equivalent to previous example —
int a[3][4] = {0,1,2,3,4,5,6,7,8,9,10,11};
Accessing Two-Dimensional Array Elements
An element in 2-dimensional array is accessed by using the subscripts, i.e., row index and
column index of the array. For example —
int val = a[2][3];
The above statement will take 4™ element from the 3" row of the array. You can verify it in
the above digram.
#include <iostream>
using namespace std;
int main () {

/l an array with 5 rows and 2 columns.

inta[5][2] ={{0,0}, {1,2}, {2,4}, {3.6}.{4.8}};

// output each array element's value

for (inti=0;i<5;i++)

for (intj=0;j<2;j++){
cout << "g[" <<i<<"|["<< <<
cout << a[i][j]<< endl;
}

return O;

}

When the above code is compiled and executed, it produces the following result —

a[0][0]: 0

Compiled By: Dr. Mehul Patel Page 8 of 51

Object Oriented Programming — | (USO3CBCAZ23)

(Unit-2)

a[0][1]: O
a[1][0]: 1
a[1][1]: 2
a[2][0]: 2
a[2][1]: 4
a[3][0]: 3
a[3][1]: 6
a[4][0]: 4
a[4][1]: 8

As explained above, you can have arrays with any number of dimensions, although it is

likely that most of the arrays you create will be of one or two dimensions.

Example 3: MultiDimensional Array

#include <iostream>
using namespace std;
int main()
{
/I This array can store upto 12 elements (2x3x2)
int test[2][3][2];
cout << "Enter 12 values: \n";
/I Inserting the values into the test array
I/ using 3 nested for loops.
for(inti=0;i<2; ++i)
{
for (intj = 0; j < 3; +4j)
{
for(intk =0; k < 2; ++k))

{
cin >> test[i][j1[k];

¥

cout<<"\nDisplaying Value stored:"<<endl;
// Displaying the values with proper index.

for(inti=0;1<2; ++i)

Compiled By: Dr. Mehul Patel

Page 9 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

{
for (intj=0; j < 3; ++j)
{
for(intk = 0; k < 2; ++K)
{
cout << "test[" << i<<"[" << <<M[" << k << "] =" << test[i][j][K] << endl;
}
}
}
return O;
}
Output

Enter 12 values:

O©CoOoO~NOoO O WN P

Displaying Value stored:
test[0][0][0] = 1
test[0][0][1] = 2
test[0][1][0] =3
test[O][1][1]
test[0][2][O]
test[0][2][1]
test[1][0][O]
]
|

O© oo ~NO O

test[1][0][1
test[1][1][O
test[1][1][1] = 10
test[1][2][0] = 11
test[1][2][1] = 12

Compiled By: Dr. Mehul Patel Page 10 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

As the number of dimension increases, the complexity also increases tremendously
although the concept is quite similar.

Operations on Array

Insert Element in Array in C++

To insert an element in an array in C++ programming, you have to ask to the user to enter
the array size and array elements and ask to the user to enter the element (with their
position) to insert the element at desired position in the array.

After inserting the element at the desired position in the array, display the new array on
the screen as shown here in the following program.

C++ Programming Code to Insert Element in Array

Following C++ program ask to the user to enter array size, then ask to the user to enter
array element, then ask to the user to enter element or number to be insert, then at last it
will ask to the user to enter the position (index number) where he or she want to insert the
desired element in the array, so this program insert the desired element and display the

new array on the screen after inserting the element:
[* C++ Program - Insert Element in Array */

#include<iostream.h>

#include<conio.h>

void main()

{
clrscr();
int arr[50], size, insert, i, pos;
cout<<"Enter Array Size : ";
cin>>size;
cout<<"Enter array elements : ";
for(i=0; i<size; i++)

{
k

cout<<"Enter element to be insert : ";

cin>>insert;

cout<<"At which position (Enter index number) ? *;
cin>>pos;

/I now create a space at the required position
for(i=size; i>pos; i--)

{
k

cin>>arr[i];

arr[i]=arr[i-1];

Compiled By: Dr. Mehul Patel Page 11 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

arr[pos]=insert;

cout<<"Element inserted successfully..!\n";
cout<<"Now the new array is : \n";

for(i=0; i<size+1; i++)

{

cout<<arr[i]<<"";

¥
getch();

When the above C++ program is compile and executed, it will produce the following
result.

#} CATURBOC~1\Disk\TurboC3

[Enter Array Size : 10

Enter array elements = 1

2

3
5
6
7
8

be insert : 4
At which position (Enter index number)> 7?7 3
Element inserted successfully..??
Now the new array is :

12345678916 11

Delete Element from Array in C++

To delete element from an array in C++ programming, you have to first ask to the user to
enter the array size then ask to enter the array elements, now ask to enter the element
which is to be deleted. Search that number if found then place the next element after the
founded element to the back until the last as shown here in the following program.

C++ Programming Code to Delete Element from Array

Following C++ program ask to the user to enter array size, then enter array elements then
it will ask to enter element to be delete, to delete the desired element from the array, then

display the new array on the screen:
[* C++ Program - Delete Element from Array */

#include<iostream.h>
#include<conio.h>
void main()

{

Compiled By: Dr. Mehul Patel Page 12 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

clrscr();

int arr[50], size, i, del, count=0;
cout<<"Enter array size : ",
cin>>size;

cout<<"Enter array elements : ";
for(i=0; i<size; i++)

{ . .
cin>>arr[i];
}
cout<<"Enter element to be delete : *;
cin>>del;

for(i=0; i<size; i++)

if(arr[i]==del)

{
for(int j=i; j<(size-1); j++)
arr[j]=arr[j+1];
count++;
break;
}
}
if(count==0)
{
cout<<"Element not found..!!";
}
else
{
cout<<"Element deleted successfully..!\n";
cout<<"Now the new array is :\n";
for(i=0; i<(size-1); i++)
{
cout<<arr[i]<<"";
}
}
getch();

When the above C++ program is compile and executed, it will produce the following result:

Compiled By: Dr. Mehul Patel Page 13 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

@ CATURBOC~1\Disk\TurboC3\SOURCE\1000.EXE

Enter array size : 10
Enter array elements = 1

Enter element to be delete : 6
Element deleted successfully..t?
Now the new array is =

1 234578 9 16

Code for Program to perform array operations like append, insert, delete, edit,
display in C++ Programming
#include<iostream.h>

#include<stdio.h>
#include<conio.h>

main()
{
int array[15];
int no_el,
clrscr();
cout<<"Enter the no of element :";
cin>>no_el;
for(int i=0;i<no_el;i++)
{

cout<<"Enter the element : ";
cin>>arrayf[i];

}

while(1)

{
clrscr();
cout<<endl<<"1. Append";
cout<<endl<<"2. Insert";
cout<<endl<<"3. Delete by value";
cout<<endl<<"4. edit";
cout<<endl<<"5. display";
cout<<endl<<"6. search™;
cout<<endl<<"7. exit";
cout<<endl<<"Enter your choice : ";
int choice;
cin>>choice;
switch(choice)

{

case 1:

Compiled By: Dr. Mehul Patel Page 14 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

cout<<"Enter the new element : ";
int new_el;
cin>>new _el,
array[no_el]=new_el;
no_el++;
break;
case 2:
cout<<"Enter the position at which you want to insert : *;
int pos;
cin>>pos;
cout<<"Enter the new element : ";
cin>>new_el;
Pos--;
for(i=no_el-1;i>=pos;i--)
array[i+1]=array[i];
array[pos]=new _el;
no_el++;
break;
case 3:
cout<<"Enter the value to be search : ";
int key;
cin>>key;
for(pos=0;pos<no_el;pos++)

if(array[pos]==key)
break;
}

if(pos==no_el)
{
cout<<"Search key not found";
break;
}
for(i=pos;i<no_el;i++)
array[i]=array[i+1];
no_el--;
break;
case 4:
cout<<"Enter the position to be edit : ";
cin>>pos;
cout<<"Enter the new value for old position : ";
cin>>array[pos-1];
break;
case 5:
cout<<endl:
for(i=0;i<no_el;i++)
cout<<endl<<"The element is : "<<array[i];
break;
case 6:

Compiled By: Dr. Mehul Patel Page 15 of 51

http://www.dailyfreecode.com/Code/perform-array-operations-append-2646.aspx

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

cout<<"Enter the value to be search : ";
cin>>key;
for(pos=0;pos<no_el;pos++)

{
if(array[pos]==key)
break;
}

if(pos==no_el)

{

cout<<"Search key not found";
break;

¥

cout<<"Search key found at : "<<pos+1;
break;
case 7:

return(0);
break;

}
getch();
}
}

C++ Strings

C++ provides following two types of string representations —

e The C-style character string.

e The string class type introduced with Standard C++.
The C-Style Character String
The C-style character string originated within the C language and continues to be supported
within C++. This string is actually a one-dimensional array of characters which is terminated
by a null character \0'. Thus a null-terminated string contains the characters that comprise
the string followed by a null.
The following declaration and initialization create a string consisting of the word "Hello".
To hold the null character at the end of the array, the size of the character array containing
the string is one more than the number of characters in the word "Hello."
char greeting[6] = {'H', 'e",'I', 'I', '0', \O'};
If you follow the rule of array initialization, then you can write the above statement as
follows —
char greeting[] = "Hello";

Compiled By: Dr. Mehul Patel Page 16 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

Following is the memory presentation of above defined string in C/C++ —

- 0 1 2 3 4 5
Variable H e | I o} \0
Address 0x23451 | ox23a52 | ox23453 0x23454 | ox23455 | 0x23456

Actually, you do not place the null character at the end of a string constant. The C++
compiler automatically places the "\0' at the end of the string when it initializes the array. Let
us try to print above-mentioned string —
#include <iostream>
using namespace std;
int main () {

char greeting[6] = {'H','e", 'I', 'I', '0", \O'};

cout << "Greeting message: ";

cout << greeting << endl;

return O;

¥

When the above code is compiled and executed, it produces the following result —
Greeting message: Hello

C++ supports a wide range of functions that manipulate null-terminated strings —

Sr.No Function & Purpose

1 strcpy(sl, s2);
Copies string s2 into string s1.

2 strcat(sl, s2);
Concatenates string s2 onto the end of string s1.

3 strlen(sl);
Returns the length of string s1.

4 strcmp(sl, s2);
Returns 0 if s1 and s2 are the same; less than O if s1<s2; greater than O if s1>s2.

5 strchr(sl, ch);
Returns a pointer to the first occurrence of character ch in string s1.

Compiled By: Dr. Mehul Patel Page 17 of 51

Object Oriented Programming — | (USO3CBCAZ23)

(Unit-2)

6

Following example makes use of few of the above-mentioned functions —

strstr(sl, s2);

Returns a pointer to the first occurrence of string s2 in string s1.

#include <iostream>
#include <cstring>

using namespace std;

int main () {

by

char str1[10] = "Hello™;
char str2[10] = "World";
char str3[10];

int len;

/I copy strl into str3
strepy(str3, strl);
cout << "strcpy(str3, strl) : " << str3 << endl;

/l concatenates strl and str2
strcat(strl, str2);
cout << "strcat(strl, str2): " << strl <<endl;

// total lenghth of strl after concatenation
len = strlen(strl);
cout << "strlen(strl) : " << len << endl;

return O;

When the above code is compiled and executed, it produces result something as follows —

strepy(str3, strl) : Hello
strcat(strl, str2): Helloworld
strlen(strl) : 10

The String Class in C++

The standard C++ library provides a string class type that supports all the operations
mentioned above, additionally much more functionality. Let us check the following example

#include <iostream>
#include <string>

using namespace std;

int main () {

string strl = "Hello™;

Compiled By: Dr. Mehul Patel

Page 18 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

string str2 = "World";
string str3;
int len;

/I copy strl into str3
str3 = strl;
cout << "str3: " << str3 << endl;

/I concatenates strl and str2
str3 = strl + str2;
cout << "strl +str2 : " << str3 << endl;

// total length of str3 after concatenation
len = str3.size();
cout << "str3.size() : " <<len <<endl;

return O;

ky

When the above code is compiled and executed, it produces result something as follows —

str3 : Hello
strl + str2 : HelloWorld
str3.size() : 10

Some more detailing about String:
String is a collection of characters. There are two types of strings commonly used in C++
programming language:

« Strings that are objects of string class (The Standard C++ Library string class)

e C-strings (C-style Strings)
In C programming, the collection of characters is stored in the form of arrays, this is also
supported in C++ programming. Hence it's called C-strings.
C-strings are arrays of type char terminated with null character, that is, \O (ASCII value of
null character is 0).
How to define a C-string?

char str[] = "C++",;

In the above code, str is a string and it holds 4 characters.

Although, "C++" has 3 character, the null character \O is added to the end of the string
automatically.

Alternative ways of defining a string

char str[4] = "C++";

char str[] = {'C",'+",'+'\0'};

char str[4] = {'C,'+','+'\0'};

Compiled By: Dr. Mehul Patel Page 19 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

Like arrays, it is not necessary to use all the space allocated for the string. For example:
char str[100] = "C++";

Example 1: C++ String to read a word
C++ program to display a string entered by user.

#include <iostream>
using namespace std;

int main()

{
char str[100];

cout << "Enter a string: ";
cin >> str;
cout << "You entered: " << str << endl;

cout << "\nEnter another string: ";
cin >> str;
cout << "You entered: "<<str<<endl;

return O;
}
Output

Enter a string: C++
You entered: C++

Enter another string: Programming is fun.
You entered: Programming

Notice that, in the second example only "Programming" is displayed instead of
"Programming is fun".

This is because the extraction operator >> works as scanf() in C and considers a space " " has
a terminating character.

Example 2: C++ String to read a line of text

C++ program to read and display an entire line entered by user.

#include <iostream>
using namespace std;
int main()
{
char str[100];
cout << "Enter a string: ";
cin.get(str, 100);
cout << "You entered: " << str << endl;
return O;

Compiled By: Dr. Mehul Patel Page 20 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

Output

Enter a string: Programming is fun.
You entered: Programming is fun.

To read the text containing blank space, cin.get function can be used. This function takes two
arguments.

First argument is the name of the string (address of first element of string) and second
argument is the maximum size of the array.

In the above program, str is the name of the string and 100 is the maximum size of the array.
string Object

In C++, you can also create a string object for holding strings.

Unlike using char arrays, string objects has no fixed length, and can be extended as per your
requirement.

Example 3: C++ string using string data type

#include <iostream>
using namespace std;

int main()

{
Il Declaring a string object
string str;
cout << “Enter a string: ";
getline(cin, str);

cout << "You entered: " << str << endl;
return O;

}
Output

Enter a string: Programming is fun.
You entered: Programming is fun.

In this program, a string str is declared. Then the string is asked from the user.

Instead of wusing cin>> or cin.get() function, you can get the entered line of text
using getline().

getline() function takes the input stream as the first parameter which is cin and str as the
location of the line to be stored.

Passing String to a Function

Strings are passed to a function in a similar way arrays are passed to a function.

#include <iostream>
using namespace std;

void display(char *);
void display(string);

int main()

Compiled By: Dr. Mehul Patel Page 21 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

string strl;
char str[100];

cout << “Enter a string: ";
getline(cin, strl);

cout << "Enter another string: ";
cin.get(str, 100, \n');

display(strl);
display(str);
return 0;

}

void display(char s[])
{

cout << "Entered char array is: " << s << endl;

}
void display(string s)
{

cout << "Entered string is: " << s << endl;
}
Output

Enter a string: Programming is fun.
Enter another string: Really?

Entered string is: Programming is fun.
Entered char array is: Really?

In the above program, two strings are asked to enter. These are stored
in str and strlrespectively, where str is a char array and strl is a string object.

Then, we have two functions display() that outputs the string onto the string.

The only difference between the two functions is the parameter. The first display() function
takes char array as a parameter, while the second takes string as a parameter.

This process is known as function overloading.

How to define a class in C++?

A class is defined in C++ using keyword class followed by the name of class.

The body of class is defined inside the curly brackets and terminated by a semicolon at
the end.

class className

{

// some data
/I some functions

Compiled By: Dr. Mehul Patel Page 22 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

Example: Class in C++
class Test

{

private:
int datal;
float data2;

public:
void functionl()
{ datal=2; }

float function2()

{
data2 = 3.5;

return data2;
}
%

Here, we defined a class named Test.

This class has two data members: datal and data2 and two member
functions: function1()and function2().

Keywords: private and public
You may have noticed two keywords: private and public in the above example.

The private keyword makes data and functions private. Private data and functions can be
accessed only from inside the same class.

The public keyword makes data and functions public. Public data and functions can be
accessed out of the class.

Here, datal and data2 are private members where as function1() and function2() are public
members.

If you try to access private data from outside of the class, compiler throws error. This
feature in OOP is known as data hiding.

C++ Objects

When class is defined, only the specification for the object is defined; no memory or
storage is allocated.

Compiled By: Dr. Mehul Patel Page 23 of 51

Object Oriented Programming — | (USO3CBCAZ23)

(Unit-2)

To use the data and access functions defined in the class, you need to create objects.

Syntax to Define Object in C++

className objectVariableName;

You can create objects of Test class (defined in above example) as follows:
class Test

{

private:
int datal;
float data2;

public:
void functionl()
{ datal=2; }

float function2()

data2 = 3.5;
return data2;

}
%

int main()

{
¥

Test 01, 02;

Here, two objects o1 and o2 of Test class are created.

In the above class Test, datal and data2 are data members and function1() and function2() are

member functions.

Example: Object and Class in C++ Programming

/I Program to illustrate the working of objects and class in C++ Programming
#include <iostream>
using namespace std;
class Test
{ -
private:
int datal;
float data2;
public:
void insertintegerData(int d)
{
datal = d;
cout << "Number: " << datal;

Compiled By: Dr. Mehul Patel

Page 24 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

}
float insertFloatData()

{

cout << "\nEnter data: "';
cin >> data2;
return data2;

}
h
int main()

{
Test 01, 02;

float secondDataOfObject2;

ol.insertintegerData(12);
secondDataOfObject2 = 02.insertFloatData();

cout << "You entered " << secondDataOfObject2;
return O;

Output

Number: 12
Enter data: 23.3
You entered 23.3

C++ Constructors

A constructor is a special type of member function that initializes an object automatically
when it is created.

Compiler identifies a given member function is a constructor by its name and the return
type.

Constructor has the same name as that of the class and it does not have any return type.
Also, the constructor is always public.

class temporary

{
private:
int X;
float y;
public:
/I Constructor
Temporary (): x(5), y(5.5)
{
// Body of constructor
}
¥

Compiled By: Dr. Mehul Patel Page 25 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

int main()

{
Temporary t1;

¥

Above program shows a constructor is defined without a return type and the same name
as the class.

How constructor works?

In the above pseudo code, temporary () is a constructor.

When an object of class temporary is created, the constructor is called automatically,
and xis initialized to 5 and y is initialized to 5.5.

You can also initialize the data members inside the constructor's body as below.
However, this method is not preferred.

temporary()

X=75;
y =15.5;
}
/I This method is not preferred.

Use of Constructor in C++

Suppose you are working on 100's of Person objects and the default value of a data
member age is 0. Initializing all objects manually will be a very tedious task.

Instead, you can define a constructor that initializes age to 0. Then, all you have to do is
create a Person object and the constructor will automatically initialize the age.

These situations arise frequently while handling array of objects.

Also, if you want to execute some code immediately after an object is created, you can
place the code inside the body of the constructor.

Example 1: Constructor in C++
Calculate the area of a rectangle and display it.

#include <iostream>
using namespace std;

class Area
t
private:
int length;
int breadth;

public:
/I Constructor

Compiled By: Dr. Mehul Patel Page 26 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

Area(): length(5), breadth(2){ }
void GetLength()

cout << "Enter length and breadth respectively: ™;
cin >> length >> breadth;

¥

int AreaCalculation() { return (length * breadth); }
void DisplayArea(int temp)

cout << "Area: " << temp;

}
%

int main()

{
Area Al, A2;

int temp;

Al.GetLength();
temp = Al.AreaCalculation();
Al.DisplayArea(temp);

cout << endl << "Default Area when value is not taken from user" << endl;

temp = A2.AreaCalculation();
A2.DisplayArea(tempy);

return O;

¥

In this program, class Area is created to handle area related functionalities. It has two data
members length and breadth.

A constructor is defined which initialises length to 5 and breadth to 2.

We also have three additional member functions GetLength(), AreaCalculation() and
DisplayArea() to get length from the user, calculate the area and display the area
respectively.

When, objects Al and A2 are created, the length and breadth of both objects are initialized
to 5 and 2 respectively, because of the constructor.

Then, the member function GetLength() is invoked which takes the value
of length and breadth from the user for object A1. This changes the length and breadth of
the object Al.

Then, the area for the object Alis calculated and stored in variable temp by
calling AreaCalculation() function and finally, it is displayed.

For object A2, no data is asked from the user. So, the length and breadth remains 5 and 2
respectively.

Then, the area for A2 is calculated and displayed which is 10.

Compiled By: Dr. Mehul Patel Page 27 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

Output

Enter length and breadth respectively: 6

7

Area: 42

Default Area when value is not taken from user
Area: 10

Constructor Overloading

Constructor can be overloaded in a similar way as function overloading.

Overloaded constructors have the same name (name of the class) but different number of
arguments.

Depending upon the number and type of arguments passed, specific constructor is called.
Since, there are multiple constructors present, argument to the constructor should also be
passed while creating an object.

Example 2: Constructor overloading

/I ' Source Code to demonstrate the working of overloaded constructors
#include <iostream>
using namespace std,;

class Area

{

private:
int length;
int breadth;

public:
// Constructor with no arguments
Area(): length(5), breadth(2) { }

// Constructor with two arguments
Area(int I, int b): length(l), breadth(b){ }

void GetLength()

cout << "Enter length and breadth respectively: ";
cin >> length >> breadth;

}

int AreaCalculation() { return length * breadth; }

void DisplayArea(int temp)
{

cout << "Area: " << temp <<endl,

}
%

Compiled By: Dr. Mehul Patel Page 28 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

int main()

{
Area Al, A2(2, 1);
int temp;

cout << "Default Area when no argument is passed.” << endl,
temp = Al.AreaCalculation();
Al.DisplayArea(temp);

cout << "Area when (2,1) is passed as argument.”" << endl;
temp = A2.AreaCalculation();
A2.DisplayArea(temp);

return O;
}

For object A1, no argument is passed while creating the object.

Thus, the constructor with no argument is invoked which initialises lengthto 5
and breadthto 2. Hence, area of the object A1 will be 10.

For object A2, 2 and 1 are passed as arguments while creating the object.

Thus, the constructor with two arguments is invoked which initialises length to I (2 in this
case) and breadth to b (1 in this case). Hence, area of the object A2 will be 2.

Output

Default Area when no argument is passed.
Area: 10

Area when (2,1) is passed as argument.
Area: 2

Default Copy Constructor

An object can be initialized with another object of same type. This is same as copying the
contents of a class to another class.

In the above program, if you want to initialise an object A3 so that it contains same values
as A2, this can be performed as:

|nt main()
{
Area Al, A2(2, 1);

/I Copies the content of A2 to A3
Area A3(A2);

OR,
Area A3 = A2;

¥

You might think, you need to create a new constructor to perform this task. But, no
additional constructor is needed. This is because the copy constructor is already built into
all classes by default.

Compiled By: Dr. Mehul Patel Page 29 of 51

Object Oriented Programming — | (USO3CBCAZ23)

(Unit-2)

Types of Constructors

1. Default Constructors: Default constructor is the constructor which doesn’t take any

argument. It has no parameters.
/I Cpp program to illustrate the
/I concept of Constructors
#include <iostream>

using namespace std;

class construct {
public:
inta, b;

/I Default Constructor
construct()

int main()

{

// Default constructor called automatically

/l when the object is created

construct c;

cout << "a: " << c.a <<endl
<<"b: " <<c.b;

return 1,

}
Output:

a: 10
b: 20

Note: Even if we do not define any constructor explicitly, the compiler will

automatically provide a default constructor implicitly.

2. Parameterized Constructors: It is possible to pass arguments to constructors.
Typically, these arguments help initialize an object when it is created. To create a
parameterized constructor, simply add parameters to it the way you would to any other
function. When you define the constructor’s body, use the parameters to initialize the

object.

/I CPP program to illustrate
/I parameterized constructors
#include <iostream>

using namespace std;

Compiled By: Dr. Mehul Patel

Page 30 of 51

https://www.geeksforgeeks.org/c-internals-default-constructors-set-1/

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

class Point {
private:
intx,y;

public:
/I Parameterized Constructor
Point(int x1, int y1)
{
X =X1;
y=yl;
}

int getX()
{

return Xx;

}
int getY()

{
return y;
}
Y
int main()
{

/I Constructor called
Point p1(10, 15);

/I Access values assigned by constructor
cout << "pl.x =" << pl.getX() << ", pl.y =" << pl.getY();

return O;

}
Output:

pl.x =10, ply=15

When an object is declared in a parameterized constructor, the initial values have to be
passed as arguments to the constructor function. The normal way of object declaration
may not work. The constructors can be called explicitly or implicitly.
Example e = Example(0, 50); // Explicit call
Example (0, 50); /Il Implicit call
Uses of Parameterized constructor:

1. Itis used to initialize the various data elements of different objects with different

values when they are created.
2. ltis used to overload constructors.

Can we have more than one constructors in a class?
Yes, It is called Constructor Overloading.

Compiled By: Dr. Mehul Patel Page 31 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

3. Copy Constructor: A copy constructor is a member function which initializes an
object using another object of the same class. Detailed article on Copy Constructor.

C++ Constructor Overloading Example
/*.....A program to highlight the concept of constructor overloading.......... */
#include <iostream>
using namespace std;
class ABC
t
private:
int x,y;
public:
ABC () /lconstructor 1 with no arguments

ABC(int a,int b) //constructor 3 with two argument
{

X=a;

y=b;

}
void display()
{

cout<<"x ="<<x<<"and" <<"y="<<y<<endl

}
%

int main()
{
ABC ccl; //constructor 1
ABC cc2(10); //constructor 2
ABC cc3(10,20); //constructor 3
ccl.display();
cc2.display();
cc3.display();
return O;
} /lend of program

Output

x=0andy=0

x=10andy =10

x=10andy =20

Explanation

In the above program, three constructors have been defined. The first one is invoked when no

Compiled By: Dr. Mehul Patel Page 32 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

arguments is passed in ABC ccl. The second one is invoked when we pass one integer value
as an argument as the constructor has one integer parameter. Similarly, when we pass two
arguments in ABC cc3, the constructor with two arguments is invoked.

Destructors in C++

What is destructor?
Destructor is a member function which destructs or deletes an object.

When is destructor called?

A destructor function is called automatically when the object goes out of scope:
(1) the function ends

(2) the program ends

(3) a block containing local variables ends

(4) a delete operator is called

How destructors are different from a normal member function?
Destructors have same name as the class preceded by a tilde (~)
Destructors don’t take any argument and don’t return anything

Can there be more than one destructor in a class?
No, there can only one destructor in a class with classname preceded by ~, no parameters and
no return type.

When do we need to write a user-defined destructor?

If we do not write our own destructor in class, compiler creates a default destructor for us.
The default destructor works fine unless we have dynamically allocated memory or pointer in
class. When a class contains a pointer to memory allocated in class, we should write a
destructor to release memory before the class instance is destroyed. This must be done to
avoid memory leak.

Can a destructor be virtual?
Yes, In fact, it is always a good idea to make destructors virtual in base class when we have a
virtual function. See virtual destructor for more details.

Destructors don’t take any argument and don’t return anything

class String
L
private:
char *s;
int size;
public:
String(char *); // constructor
~String(); // destructor

}

String::String(char *c)
{

size = strlen(c);

Compiled By: Dr. Mehul Patel Page 33 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

S = new char[size+1];
strepy(s,c);
¥

String::~String()

delete []s;
}

C++ Access Specifiers

Access specifier can be either private or protected or public. In general access specifiers are
the access restriction imposed during the derivation of different subclasses from the base
class.

e private access specifier

e protected access specifier

e public access specifier
Private access specifier
If private access specifier is used while creating a class, then the public and protected data
members of the base class become the private member of the derived class and private
member of base class remains private.
In this case, the members of the base class can be used only within the derived class and
cannot be accessed through the object of derived class whereas they can be accessed by
creating a function in the derived class.
Following block diagram explain how data members of base class are inherited when derived
class access mode is private.

Derived class

Base class
Private a a is not accessible
Access mode is private |
Protected :b | Private b
Public A Private 26

Note: Declaring data members with private access specifier is known as data hiding.
Sample program demonstrating private access specifier

/I private access specifier.cpp

#include <iostream>

using namespace std;

class base
{ _
private:
int x;
protected:

Compiled By: Dr. Mehul Patel Page 34 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

inty;

public:
int z;

base() //constructor to initialize data members

{
X =1,
y=2;
z=3;
}
Y
class derive: private base
{
/ly and z becomes private members of class derive and x remains private
public:
void showdata()
{
cout << "X is not accessible" << endl;
cout << "value of y is " <<y << endl;
cout << "value of z is "' << z << endl;
}
Y
int main()

derive a; //object of derived class
a.showdata();
/lax =1; notvalid : private member can't be accessed outside of class
lla.y = 2; notvalid :y is now private member of derived class
/la.z =3; notvalid : z is also now a private member of derived class
return O;

} /lend of program

Output

X is not accessible

value of y is 2

value of z is 3

Explanation

When a class is derived from the base class with private access specifier the private members
of the base class can’t be accessed. So in above program, the derived class cannot access the
So in above program, the derived class cannot access the member x which is private in the
base class, however, derive class has access to the protected and public members of the base
class. So the

Hence the function showdata in derived class can access the public and protected member of
the base class.

Common Programming Error

When function which is not the member of class or friend try to access a private member of
that class results in an error.

Compiled By: Dr. Mehul Patel Page 35 of 51

Object Oriented Programming — | (USO3CBCAZ23)

(Unit-2)

Protected Access Specifier

If protected access specifier is used while deriving class then the public and protected data
members of the base class becomes the protected member of the derived class and private
member of the base class are inaccessible.
In this case, the members of the base class can be used only within the derived class as
protected members except for the private members.
Following block diagram explain how data members of base class are inherited when derived

class access mode is protected.

Derived class

Base class
Private :a a is not accessible
Access mode is protected |
Protected :b Protected :b
Public R protected i ¢
Sample program demonstrating protected access specifier
/I protected access specifier.cpp
#include <iostream>
using namespace std;
class base
{ |
private:
int x;
protected:
inty;
public:
int z;
base() //constructor to initialize data members
{
x=1;
y=2;
z2=3;
}
3
class derive: protected base
{
/ly and z becomes protected members of class derive
public:
Compiled By: Dr. Mehul Patel Page 36 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

void showdata()
{
cout << "X is not accessible" << endl;
cout << "value of y is " <<y <<endl;
cout << "value of z is " << z << endl;

}
j
int main()
{
derive a; //object of derived class
a.showdata();
/lax =1; notvalid : private member can't be accessed outside of class
/la.y = 2; notvalid :y is now private member of derived class
/la.z =3; notvalid : z is also now a private member of derived class
return 0;
} /lend of program
Output
X is not accessible
value of y is 2
value of z is 3
Public access specifier

If public access specifier is used while deriving class then the public data members of the
base class becomes the public member of the derived class and protected members becomes
the protected in the derived class but the private members of the base class are inaccessible.
Following block diagram explain how data members of base class are inherited when derived
class access mode is public

Base class Derived class

Private ta a is not accessible

Access mode is public

Protected b | > Protected :b

Public e Public el

Sample program demonstrating public access specifier
Il public access specifier.cpp

#include <iostream>

using namespace std;

class base

{

private:
int x;

Compiled By: Dr. Mehul Patel Page 37 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

protected:
inty;

public:
int z;

base() //constructor to initialize data members

{

1;
2;
3

N < X
I

)2

class derive: public base
{
/ly becomes protected and z becomes public members of class derive
public:
void showdata()
{
cout << "x is not accessible" << endl;
cout << "value of y is " <<y << endl;
cout << "value of zis " << z << endl;

}
Y
int main()
{
derive a; //object of derived class
a.showdata();
/lax =1; notvalid : private member can't be accessed outside of class
lla.y = 2; not valid :y is now private member of derived class
/la.z =3; notvalid : z is also now a private member of derived class
return O;
} /lend of program
Output
X is not accessible
value of y is 2
value of z is 3
This is all about C++ access Specifiers.

Compiled By: Dr. Mehul Patel Page 38 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

Implementing and accessing class members
Defining Class and Declaring Objects

A class is defined in C++ using keyword class followed by the name of class. The body of
class is defined inside the curly brackets and terminated by a semicolon at the end.

keyword user-defined name

| L

cla:s ClassNa r'm!

{ Access specifier: //can be private,public or protected
Data members; // Variables to be used
Member Functions() {} //Methods to access data members

}: // Class name ends with a semicolon

Declaring Objects: When a class is defined, only the specification for the object is defined;
no memory or storage is allocated. To use the data and access functions defined in the class,
you need to create objects.

Syntax:

ClassName ObjectName;

Accessing data members and member functions: The data members and member functions
of class can be accessed using the dot(‘.”) operator with the object. For example if the name
of object is obj and you want to access the member function with the name printName() then
you will have to write obj.printName() .

Accessing Data Members

The public data members are also accessed in the same way given however the private data
members are not allowed to be accessed directly by the object. Accessing a data member
depends solely on the access control of that data member.
This access control is given by Access modifiers in C++. There are three access modifiers
: public, private and protected.

/I C++ program to demonstrate
/I accessing of data members

#include <bits/stdc++.h>
using namespace std;
class Geeks
{
Il Access specifier
public:

/l Data Members

Compiled By: Dr. Mehul Patel Page 39 of 51

https://www.geeksforgeeks.org/access-modifiers-in-c/

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

string geekname;

/I Member Functions()
void printname()
{
cout << "Geekname is: " << geekname;
}
3

int main() {

Il Declare an object of class geeks
Geeks obj1;

/I accessing data member
objl.geekname = "Abhi";

I accessing member function
obj1.printname();
return O;

}
Output:

Geekname is: Abhi

Member Functions in Classes
There are 2 ways to define a member function:

« Inside class definition

e Outside class definition
To define a member function outside the class definition we have to use the scope resolution
.. operator along with class name and function name.

/I C++ program to demonstrate function
/I declaration outside class

#include <bits/stdc++.h>
using namespace std;
class Geeks
{
public:
string geekname;
intid;

/I printname is not defined inside class defination
void printname();

/[printid is defined inside class defination
void printid()

cout << "Geek id is: " << id;

Compiled By: Dr. Mehul Patel Page 40 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

}
}

/I Definition of printname using scope resolution operator ::
void Geeks::printname()

{

cout << "Geekname is: " << geekname;
}
int main() {

Geeks obj1;

objl.geekname = "xyz";

objl.id=15;

/[call printname()
objl.printname();
cout << endl,

/I call printid()
objl.printid();
return O;

}
Output:

Geekname is: xyz
Geek id is: 15

Note that all the member functions defined inside the class definition are by default inline,
but you can also make any non-class function inline by using keyword inline with them.
Inline functions are actual functions, which are copied everywhere during compilation, like
pre-processor macro, so the overhead of function calling is reduced.

Note: Declaring a friend function is a way to give private access to a non-member function

The members of a class can be directly accessed inside the class using their names.
However, accessing a member outside the class depends on its access specifier. The
access specifier not only determines the part of the program where the member is
accessible, but also how it is accessible in the program.

Accessing Public Members: The public members of a class can be accessed outside the class
directly using the object name and dot operator '. The dot operator associates a member with
the specific object of the class.

The syntax for accessing a public data member outside the class is

obj_name.member_name; The syntax for calling a public member function is
object_name.function_name(parameter_list);

To understand the concept of accessing public members of a class, consider this example.
Example : A code segment to demonstrate the concept of accessing public members of a class
#include<iostream>

using namespace std;

class number

Compiled By: Dr. Mehul Patel Page 41 of 51

http://quiz.geeksforgeeks.org/friend-class-function-cpp/

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

{

int x;

public:

inty;

int z;

void fn(int a);

}

int main ()

{

number p;

p.y =7,

p.z =2,

p.X = 3;

p.fn (10) ;

return 0;

}

In this example, a class number having three data members X, y and z is defined. The data
member X is private by default, whereas, y and z are declared as public. Hence, y and z can
be accessed directly outside the class using the object name and the dot operator. However, x
being a private data member cannot be accessed directly outside the class.

Accessing Private Members: The private members of a class are not accessible outside the
class not even with the object name. However, they can be accessed indirectly through the
public member functions of that class.

To understand the concept of accessing private members of a class, consider this example.
Example : A program to demonstrate the concept of accessing private members of a class
class book

{

/ 1 body of class as in Examplel

};

int main ()

{

book bookl;

book1.price = 350;

bookl.title="Exploring IT";

bookl.getdata ("Exploring IT", 350);

return O;

}

In this example, the object bookl of class book is used to access the public member function
getdata (), which provides an indirect access to private data members title and price.

The basics of classes and objects can be summarized in a single program as shown in this
example.

Example : A program to demonstrate the concept of classes and objects in C++
#include<iostream>

using namespace std;

class book

{

/I definition of a class

char title [30];

float price;

Compiled By: Dr. Mehul Patel Page 42 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

public:

void getdata(char[] ,float);

void putdata ();

s

void book :: getdata (char a [],float b)
{

/I definition of member function
strepy(title, a);

price = b;

}

void book :: putdata(). Il Definition of member function
{

Cout<<"Title: "<<title<<", ™;
Cout<<"Price:Rs"<<price;

¥

int main ()

{

book book1, book2, book3; // creating objects
book1.getdata("Exploring IT" ,350);

/I reading data into book 1

book?2. getdata ("JAVA", 300) ;

/lreading data into book 2
book3.getdata("Computer Applications™,400);
/ reading data into book 3

Cout<<"\nTitle and Price of Book I\n";
bookl.putdata () ; 1l displaying data of book 1
cout<<"\nTitle and Price of Book 2\n";
book2.putdata (); 11 displaying data of book 2
cout<<"\nTitle and Price of Book 3\n";
book3.putdata();

return O;

}

The output of the program is

Title and Price of Book 1

Title: Exploring IT, Price: Rs 350

Title and Price of Book 2

Title: JAVA, Price: Rs 300

Title and Price of Book 3

Title: Computer Applications, Price: Rs 400

Working with objects : constant objects, nameless objects, live objects,
arrays of objects

Constant Objects:

Class member functions can be made const. What does this mean? To understand, you must
first grasp the concept of const objects.

A const object is defined the same for a user-defined type as a built-in type. For example:
constinti=1,

Compiled By: Dr. Mehul Patel Page 43 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

const blob b(2);
Here, b is a const object of type blob. Its constructor is called with an argument of two. For
the compiler to enforce constness, it must ensure that no data members of the object are
changed during the object’s lifetime. It can easily ensure that no public data is modified, but
how is it to know which member functions will change the data and which ones are “safe” for
a const object?

If you declare a member function const, you tell the compiler the function can be called for
a const object. A member function that is not specifically declared const is treated as one that
will modify data members in an object, and the compiler will not allow you to call it for
a const object.
It doesn’t stop there, however. Just claiming a member function is const doesn’t guarantee it
will act that way, so the compiler forces you to reiterate the const specification when defining
the function. (The const becomes part of the function signature, so both the compiler and
linker check for constness.) Then it enforces constness during the function definition by
issuing an error message if you try to change any members of the object or call a non-
const member function. Thus, any member function you declareconst is guaranteed to
behave that way in the definition.
To understand the syntax for declaring const member functions, first notice that preceding
the function declaration with const means the return value is const, so that doesn’t produce
the desired results. Instead, you must place the const specifier after the argument list. For
example,
/: C08:ConstMember.cpp
class X {

inti;
public:

X(int ii);
int f() const;

}

X X(int i) cigii) {3
int X::f() const { return i; }

int main() {

X x1(10);

const X x2(20);

x1.();

x2.1();
Y~
Note that the const keyword must be repeated in the definition or the compiler sees it as a
different function. Since f() is a const member function, if it attempts to change iin any
way or to call another member function that is not const, the compiler flags it as an error.
You can see that aconst member function is safe to call with both constand non-
const objects. Thus, you could think of it as the most general form of a member function (and
because of this, it is unfortunate that member functions do not automatically default to const).
Any function that doesn’t modify member data should be declared as const, so it can be used
with const objects.
Here’s an example that contrasts a const and non-const member function:
/I: C08:Quoter.cpp
/l Random quote selection

Compiled By: Dr. Mehul Patel Page 44 of 51

Object Oriented Programming — | (USO3CBCAZ23)

(Unit-2)

#include <iostream>

#include <cstdlib> // Random number generator

#include <ctime> // To seed random generator
using namespace std;

class Quoter {

int lastquote;
public:

Quoter();

int lastQuote() const;
const char* quote();

Y
Quoter::Quoter(){

lastquote = -1;

ks

int Quoter::lastQuote() const {
return lastquote;

ks

const char* Quoter::quote() {
static const char* quotes[] = {
"Are we having fun yet?",
"Doctors always know best",
"Is it ... Atomic?",
"Fear is obscene”,
"There is no scientific evidence "
"to support the idea "
"that life is serious”,
"Things that make us happy, make us wise",
j
const int gsize = sizeof quotes/sizeof *quotes;
int gnum = rand() % gsize;
while(lastquote >= 0 && gnum == lastquote)
gnum = rand() % gsize;
return quotes[lastquote = gnum];

¥

int main() {
Quoter q;
const Quoter cq;
cq.lastQuote(); // OK
/' cq.quote(); // Not OK; non const function
for(inti=0;1<20; i++)
cout << g.quote() << endl;
i~

srand(time(0)); // Seed random number generator

Compiled By: Dr. Mehul Patel

Page 45 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

Neither constructors nor destructors can be const member functions because they virtually
always perform some modification on the object during initialization and cleanup.
The quote() member function also cannot be const because it modifies the data
member lastquote (see the return statement). However, lastQuote() makes no
modifications, and so it can be const and can be safely called for the const object cq.

Nameless Objects:

Sometimes to reduce the code size, we create nameless temporary object of class. When we
want to return an object from member function of class without creating an object, for this:
we just call the constructor of class and return it to calling function and there is an object to
hold the reference returned by constructor. This concept is known as nameless temporary
objects, using this we are going to implement a C++ program for pre-increment operator
overloading.

using namespace std;
#include <iostream>

class Sample

{
/lprivate data section
private:
int count;

public: //default constructor

Sample()

{ count=0;}

/Iparameterized constructor

Sample(int ¢)

{ count=c;}

//Operator overloading function definition

Sample operator++()

{
++count;
/Ireturning count of Sample
/[There is no new object here,
/ISample(count): is a constructor by passing value of count
/land returning the value (incremented value)
return Sample(count);

}
/lprinting the value
void printValue()

{

}
+

/Imain program

cout<<"Value of count : "<<count<<endl;

Compiled By: Dr. Mehul Patel Page 46 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

int main()
{
inti=0;
Sample S1(100), S2;

for(i=0; i< 5; i++)

{
S2 = ++S1;
cout<<"S1 :"<<endl;
S1.printValue();
cout<<"S2 :"<<endl;
S2.printValue();

}

return O;

ks

In this program, we used nameless temporary object in overloaded member function.
Here, we did not create any object inside the member function. We are just calling the
constructor and returning incremented value to calling function

Live Objects

Obijects created dynamically with their data members initialized during creation are known as
Live Objects. To create a live object, constructor must be invoked automatically which
performs initialization of data members. Similarly the destructor for an object must be
invoked automatically before the memory for that object is deallocated.

A class whose live object is to be crated must have atleast one constructor. The syntax for
creating a live object is as follows.

Pointer_to_Object = new Class_name(Parameters)

Sample Program

#include <iostream.h>
#include <string.h>
class student

{

int rno;

char *name;

public:

studen(void)

Compiled By: Dr. Mehul Patel Page 47 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

{
char flag, str[50];

cout<<’Do u want to initialize the object y/n”;
cin>>flag;

if(flag == ‘y’)

{

cout<<"Enter the student number”;

cin>>rno;

cout<<"Enter the student name”;

cin>>name;

ks

else

{

rmo =0;

name = NULL;
}

}

student(int rn)
{

rno =rn;

name = NULL;
}

student(int rn, char *n)
{

rno = rn;

name = n;

}

~student()

{

if(name)

delete name;

¥

void show(void)

{

if(rno)

cout<<"Roll number is”<<rno<<endl;
else

cout<<’Number not initialized”’<<endl;
if(name)

cout<<’Student name is “<<name<<endl;

Compiled By: Dr. Mehul Patel Page 48 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

else
cout<<’Name not initialized’<<endl,

}

j

void main()

{

student *s1, *s2, *s3;

s1 = new student;

s2 = new student(1);

s3 = new student(1,”Magesh”);
cout<<’Live objects contents............. ’<<endl;
s1->show();

s2->show();

s3->show();

delete s1;

delete s2;

delete s3;

}

Array of Object

An array of objects, all of whose elements are of the same class, can be declared just as an
array of any built-in type. Each element of the array is an object of that class. Being able to
declare arrays of objects in this way underscores the fact that a class is similar to a type.

Declaring Arrays of Objects
The simplest way to create an array of Frame objects is with the following declaration:

Frame windowL.ist[5]; /l an array of 5 Frame objects

An important aspect of declaring arrays of objects in this way is that all of the objects in the
array must be constructed in the same way. It is not possible with this declaration to give each
different object in the array a different set of constructor values. Furthermore, since no
constructor arguments are given, the class must contain a constructor that has no arguments.
Arrays of this form are useful when all of the objects should be constructed in a uniform way
or when the "real™ constructor information will not be know until sometime during the
computation. In the later case, the array can be declared and the individual objects
manipulated when the information is discovered. For example, the user may be asked to
supply the name of a file which contains the desired locations and shapes for each of the
windowList objects. This information can be read and each array element can then be moved
and resized accordingly.

In other cases, it is desired that each of the objects in an array be specifically and individually
constructed at the time the array is declared. This can be done as follows:

Compiled By: Dr. Mehul Patel Page 49 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

Frame windowList[5] = {Frame("Window 0", 0, 100, 100, 100),
Frame("Window 1", 25, 100, 100, 100),
Frame("Window 2", 50, 100, 100, 100),
Frame("Window 3", 75, 100, 100, 100),
Frame("Window 4", 100, 100, 100, 100)

¥}

Each object in the array is constructed using explicitly specified values for each constructor
argument. This allows the programmer complete control over the initialization of the objects
in the array.

It is not necessary to specifiy all of the constructor arguments if there are overloaded
constructors, as there are for the Frame class. An object in an array can be constructed using
any of the constructors. For example, if it was only desired to specify the name and initial
location, but not the shape, for each object in the array then the following declaration would
suffice:

Frame windowList[5] = {Frame("Window 0", 0, 100),
Frame("Window 1", 25, 100),
Frame("Window 2", 50, 100),
Frame("Window 3", 75, 100),
Frame("Window 4", 100, 100)

}

In this case the overload constructor will determine the shape of each object. It is also
possible to use different constructors for each objects as shown here:
Frame windowList[5] = {Frame("Window 0", 0, 100, 100, 100),

Frame("Window 1", 25, 100),
Frame("Window 2"),

Frame(),

Frame("Window 4", 100, 100, 100, 100)

}

In this version, the first and last objects in the array are constructed by explicitly providing
each constructor argument. The constructor for the object named "Window 1" specifies only
the location. The constructor for the object named "Window2" specifies only the name. The
constructor for the object as subscript position 3 specifies no constructor arguments, allowing
all defaults to apply, including the name.

Manipulating Objects in an Array

An object in an array can be manipulated by a combination of the subscripting operator "[]" -
to select which object of the array is to be manipulated - and the "." (dot) operator - to apply
the operation to the selected object. For example:

windowList[3].MoveTo(100, 50);

Compiled By: Dr. Mehul Patel Page 50 of 51

Object Oriented Programming — I (USO3CBCAZ23) (Unit-2)

moves the object with subscript 3 to a new position. Remember that the subscripts begin with
0.

One of the advantages of working with arrays of objects is that it is easy to program the same
operation over all of the objects. For example, a single loop can shrink all of windows by
10% as follows:

for (inti =0; i++; i<5)
windowList[i].resize(0.9);
More complex operations involving the elements in the array are also possible. For example
the following loop positions the windows along a diagonal from upper left toward lower
right, makes them all of the size:

for (inti =0; i++;i<5) {
windowList[i].MoveTo(10*i+1, 10*i+1);
windowL.ist[i].Resize(50, 50);

}

Compiled By: Dr. Mehul Patel Page 51 of 51

