

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 1 of 51

C.P.PATEL & F.H.SHAH COMMERCE COLLEGE

(MANAGED BY SARDAR PATEL EDUCATION TRUST)

BCA, BBA (ITM) & PGDCA PROGRAMME:

BCA Semester III -Paper Code: US03CBCA23

UNIT 2- Input / Output, Arrays and Working with Classes

Sr. No. Topics

1

2

3

4

5

6

7

Basic I/O in C++

Arrays in C++ : introduction, declaration, initialization of one , two and

multi-dimensional arrays, operations on arrays

Working with strings : introduction, declaration, string manipulation

and arrays of string

Classes and objects in C++

Constructors : default, parameterized, copy, constructor overloading

and destructor

Access specifies, implementing and accessing class members

Working with objects : constant objects, nameless objects, live objects,

arrays of objects

Basic Input / Output in C++

The C++ standard libraries provide an extensive set of input/output capabilities. Very basic

and most common I/O operations required for C++ programming. C++ I/O occurs in

streams, which are sequences of bytes. If bytes flow from a device likes a keyboard, a disk

drive, or a network connection etc. to main memory, this is called input operation and if

bytes flow from main memory to a device likes a display screen, a printer, a disk drive, or a

network connection, etc., this is called output operation.

I/O Library Header Files

There are following header files important to C++ programs −

Sr.No Header File & Function and Description

1 <iostream>

This file defines the cin, cout, cerr and clog objects, which correspond to the

standard input stream, the standard output stream, the un-buffered standard error

stream and the buffered standard error stream, respectively.

The Standard Output Stream (cout)

The predefined object cout is an instance of ostream class. The cout object is said to be

"connected to" the standard output device, which usually is the display screen. The cout is

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 2 of 51

used in conjunction with the stream insertion operator, which is written as << which are two

less than signs as shown in the following example.

#include <iostream>

using namespace std;

int main()

{

 char str[] = "Hello C++";

 cout << "Value of str is : " << str << endl;

}

When the above code is compiled and executed, it produces the following result −

Value of str is : Hello C++

The C++ compiler also determines the data type of variable to be output and selects the

appropriate stream insertion operator to display the value. The << operator is overloaded to

output data items of built-in types integer, float, double, strings and pointer values.

The insertion operator << may be used more than once in a single statement as shown above

and endl is used to add a new-line at the end of the line.

The Standard Input Stream (cin)

The predefined object cin is an instance of istream class. The cin object is said to be

attached to the standard input device, which usually is the keyboard. The cin is used in

conjunction with the stream extraction operator, which is written as >> which are two

greater than signs as shown in the following example.

#include <iostream>

using namespace std;

int main()

{

 char name[50];

 cout << "Please enter your name: ";

 cin >> name;

 cout << "Your name is: " << name << endl;

}

When the above code is compiled and executed, it will prompt you to enter a name. You

enter a value and then hit enter to see the following result −

Please enter your name: cplusplus

Your name is: cplusplus

The C++ compiler also determines the data type of the entered value and selects the

appropriate stream extraction operator to extract the value and store it in the given variables.

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 3 of 51

The stream extraction operator >> may be used more than once in a single statement. To

request more than one datum you can use the following −

cin >> name >> age;

This will be equivalent to the following two statements −

cin >> name;

cin >> age;

Arrays in C++
An array is collection of items stored at continuous memory locations.

Why do we need arrays?

We can use normal variables (v1, v2, v3, ..) when we have small number of objects, but if

we want to store large number of instances, it becomes difficult to manage them with

normal variables. The idea of array is to represent many instances in one variable.

Array declaration in C++:

We can declare an array by specifying its type and size or by initializing it or by both.

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 4 of 51

1. Array declaration by specifying size

// Array declaration by specifying size

int arr1[10];

// With recent C/C++ versions, we can also

// declare an array of user specified size

int n = 10;

int arr2[n];

2. Array declaration by initializing elements
// Array declaration by initializing elements

int arr[] = { 10, 20, 30, 40 }

// Compiler creates an array of size 4.

// above is same as "int arr[4] = {10, 20, 30, 40}"

3. Array declaration by specifying size and initializing elements
// Array declaration by specifying size and initializing

// elements

int arr[6] = { 10, 20, 30, 40 }

// Compiler creates an array of size 6, initializes first

// 4 elements as specified by user and rest two elements as 0.

// above is same as "int arr[] = {10, 20, 30, 40, 0, 0}"

Facts about Array in C/C++:

 Accessing Array Elements:
Array elements are accessed by using an integer index. Array index starts with 0 and

goes till size of array minus 1.

Following are few examples.

#include <stdio.h>

int main()
{
 int arr[5];
 arr[0] = 5;
 arr[2] = -10;
 arr[3 / 2] = 2; // this is same as arr[1] = 2

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 5 of 51

 arr[3] = arr[0];

 printf("%d %d %d %d", arr[0], arr[1], arr[2], arr[3]);

 return 0;
}

Output:
5 2 -10 5

One Dimensional Array Program in C++

To print one dimensional array in C++ programming, you have to ask to the user to enter

array size and array elements to store all the array elements in one dimensional and then

print the array in one dimension using one for loop as shown here in the following

program.

C++ Programming Code for One Dimensional (1D) Array

Following C++ program ask to the user to enter the array size, then ask to enter the

element of the array to store the elements in the array, then finally display the array

element on the screen:

/* C++ Program - One Dimensional Array Program */

#include<iostream.h>

#include<conio.h>

void main()

{

 clrscr();

 int arr[50], n;

 cout<<"How many element you want to store in the array ? ";

 cin>>n;

 cout<<"Enter "<<n<<" element to store in the array : ";

 for(int i=0; i<n; i++)

 {

 cin>>arr[i];

 }

 cout<<"The Elements in the Array is : \n";

 for(i=0; i<n; i++)

 {

 cout<<arr[i]<<" ";

 }

 getch();

}

When the above C++ program is compile and executed, it will produce the following

result:

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 6 of 51

Two Dimensional Array Program in C++

Two dimensional (2D) array can be made in C++ programming language by using

two for loops, first is outer for loop and the second one is inner for loop. The

outer for loop is responsible for rows and the inner for loop is responsible for columns as

shown here in the following program.

C++ Programming Code for Two Dimensional (2D) Array

Following C++ program ask to the user to enter row and column size of the array then ask

to the user to enter array elements, and the program will display the array elements in two

dimensional (i.e., display array elements in row and column):

/* C++ Program - Two Dimensional Array Program */

#include<iostream.h>

#include<conio.h>

void main()

{

 clrscr();

 int arr[10][10], row, col, i, j;

 cout<<"Enter number of row for Array (max 10) : ";

 cin>>row;

 cout<<"Enter number of column for Array (max 10) : ";

 cin>>col;

 cout<<"Now Enter "<<row<<"*"<<col<<" Array Elements : ";

 for(i=0; i<row; i++)

 {

 for(j=0; j<col; j++)

 {

 cin>>arr[i][j];

 }

 }

 cout<<"The Array is :\n";

 for(i=0; i<row; i++)

 {

 for(j=0; j<col; j++)

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 7 of 51

 {

 cout<<arr[i][j]<<" ";

 }

 cout<<"\n";

 }

 getch();

}

When the above C++ program is compile and executed, it will produce the following

result:

Two-Dimensional Arrays
The simplest form of the multidimensional array is the two-dimensional array. A two-

dimensional array is, in essence, a list of one-dimensional arrays. To declare a two-

dimensional integer array of size x,y, you would write something as follows −

type arrayName [x][y];

Where type can be any valid C++ data type and arrayName will be a valid C++ identifier.

A two-dimensional array can be think as a table, which will have x number of rows and y

number of columns. A 2-dimensional array a, which contains three rows and four columns

can be shown as below −

Thus, every element in array a is identified by an element name of the form a[i][j], where

a is the name of the array, and i and j are the subscripts that uniquely identify each element

in a.

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 8 of 51

Initializing Two-Dimensional Arrays

Multidimensioned arrays may be initialized by specifying bracketed values for each row.

Following is an array with 3 rows and each row have 4 columns.

int a[3][4] = {

 {0, 1, 2, 3} , /* initializers for row indexed by 0 */

 {4, 5, 6, 7} , /* initializers for row indexed by 1 */

 {8, 9, 10, 11} /* initializers for row indexed by 2 */

};

The nested braces, which indicate the intended row, are optional. The following

initialization is equivalent to previous example −

int a[3][4] = {0,1,2,3,4,5,6,7,8,9,10,11};

Accessing Two-Dimensional Array Elements

An element in 2-dimensional array is accessed by using the subscripts, i.e., row index and

column index of the array. For example −

int val = a[2][3];

The above statement will take 4
th

 element from the 3
rd

 row of the array. You can verify it in

the above digram.

#include <iostream>

using namespace std;

int main () {

 // an array with 5 rows and 2 columns.

 int a[5][2] = { {0,0}, {1,2}, {2,4}, {3,6},{4,8}};

 // output each array element's value

 for (int i = 0; i < 5; i++)

 for (int j = 0; j < 2; j++) {

 cout << "a[" << i << "][" << j << "]: ";

 cout << a[i][j]<< endl;

 }

 return 0;

}

When the above code is compiled and executed, it produces the following result −

a[0][0]: 0

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 9 of 51

a[0][1]: 0

a[1][0]: 1

a[1][1]: 2

a[2][0]: 2

a[2][1]: 4

a[3][0]: 3

a[3][1]: 6

a[4][0]: 4

a[4][1]: 8

As explained above, you can have arrays with any number of dimensions, although it is

likely that most of the arrays you create will be of one or two dimensions.

Example 3: MultiDimensional Array

#include <iostream>

using namespace std;

int main()

{

 // This array can store upto 12 elements (2x3x2)

 int test[2][3][2];

 cout << "Enter 12 values: \n";

 // Inserting the values into the test array

 // using 3 nested for loops.

 for(int i = 0; i < 2; ++i)

 {

 for (int j = 0; j < 3; ++j)

 {

 for(int k = 0; k < 2; ++k)

 {

 cin >> test[i][j][k];

 }

 }

 }

 cout<<"\nDisplaying Value stored:"<<endl;

 // Displaying the values with proper index.

 for(int i = 0; i < 2; ++i)

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 10 of 51

 {

 for (int j = 0; j < 3; ++j)

 {

 for(int k = 0; k < 2; ++k)

 {

 cout << "test[" << i << "][" << j << "][" << k << "] = " << test[i][j][k] << endl;

 }

 }

 }

 return 0;

}

Output

Enter 12 values:

1

2

3

4

5

6

7

8

9

10

11

12

Displaying Value stored:

test[0][0][0] = 1

test[0][0][1] = 2

test[0][1][0] = 3

test[0][1][1] = 4

test[0][2][0] = 5

test[0][2][1] = 6

test[1][0][0] = 7

test[1][0][1] = 8

test[1][1][0] = 9

test[1][1][1] = 10

test[1][2][0] = 11

test[1][2][1] = 12

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 11 of 51

As the number of dimension increases, the complexity also increases tremendously

although the concept is quite similar.

Operations on Array

Insert Element in Array in C++

To insert an element in an array in C++ programming, you have to ask to the user to enter

the array size and array elements and ask to the user to enter the element (with their

position) to insert the element at desired position in the array.

After inserting the element at the desired position in the array, display the new array on

the screen as shown here in the following program.

C++ Programming Code to Insert Element in Array

Following C++ program ask to the user to enter array size, then ask to the user to enter

array element, then ask to the user to enter element or number to be insert, then at last it

will ask to the user to enter the position (index number) where he or she want to insert the

desired element in the array, so this program insert the desired element and display the

new array on the screen after inserting the element:
/* C++ Program - Insert Element in Array */

#include<iostream.h>

#include<conio.h>

void main()

{

 clrscr();

 int arr[50], size, insert, i, pos;

 cout<<"Enter Array Size : ";

 cin>>size;

 cout<<"Enter array elements : ";

 for(i=0; i<size; i++)

 {

 cin>>arr[i];

 }

 cout<<"Enter element to be insert : ";

 cin>>insert;

 cout<<"At which position (Enter index number) ? ";

 cin>>pos;

 // now create a space at the required position

 for(i=size; i>pos; i--)

 {

 arr[i]=arr[i-1];

 }

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 12 of 51

 arr[pos]=insert;

 cout<<"Element inserted successfully..!!\n";

 cout<<"Now the new array is : \n";

 for(i=0; i<size+1; i++)

 {

 cout<<arr[i]<<" ";

 }

 getch();

}

When the above C++ program is compile and executed, it will produce the following

result:

Delete Element from Array in C++

To delete element from an array in C++ programming, you have to first ask to the user to

enter the array size then ask to enter the array elements, now ask to enter the element

which is to be deleted. Search that number if found then place the next element after the

founded element to the back until the last as shown here in the following program.

C++ Programming Code to Delete Element from Array

Following C++ program ask to the user to enter array size, then enter array elements then

it will ask to enter element to be delete, to delete the desired element from the array, then

display the new array on the screen:
/* C++ Program - Delete Element from Array */

#include<iostream.h>

#include<conio.h>

void main()

{

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 13 of 51

 clrscr();

 int arr[50], size, i, del, count=0;

 cout<<"Enter array size : ";

 cin>>size;

 cout<<"Enter array elements : ";

 for(i=0; i<size; i++)

 {

 cin>>arr[i];

 }

 cout<<"Enter element to be delete : ";

 cin>>del;

 for(i=0; i<size; i++)

 {

 if(arr[i]==del)

 {

 for(int j=i; j<(size-1); j++)

 {

 arr[j]=arr[j+1];

 }

 count++;

 break;

 }

 }

 if(count==0)

 {

 cout<<"Element not found..!!";

 }

 else

 {

 cout<<"Element deleted successfully..!!\n";

 cout<<"Now the new array is :\n";

 for(i=0; i<(size-1); i++)

 {

 cout<<arr[i]<<" ";

 }

 }

 getch();

}

When the above C++ program is compile and executed, it will produce the following result:

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 14 of 51

Code for Program to perform array operations like append, insert, delete, edit,

display in C++ Programming

#include<iostream.h>

#include<stdio.h>

#include<conio.h>

main()

{

 int array[15];

 int no_el;

 clrscr();

 cout<<"Enter the no of element :";

 cin>>no_el;

 for(int i=0;i<no_el;i++)

 {

 cout<<"Enter the element : ";

 cin>>array[i];

 }

 while(1)

 {

 clrscr();

 cout<<endl<<"1. Append";

 cout<<endl<<"2. Insert";

 cout<<endl<<"3. Delete by value";

 cout<<endl<<"4. edit";

 cout<<endl<<"5. display";

 cout<<endl<<"6. search";

 cout<<endl<<"7. exit";

 cout<<endl<<"Enter your choice : ";

 int choice;

 cin>>choice;

 switch(choice)

 {

 case 1:

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 15 of 51

 cout<<"Enter the new element : ";

 int new_el;

 cin>>new_el;

 array[no_el]=new_el;

 no_el++;

 break;

 case 2:

 cout<<"Enter the position at which you want to insert : ";

 int pos;

 cin>>pos;

 cout<<"Enter the new element : ";

 cin>>new_el;

 pos--;

 for(i=no_el-1;i>=pos;i--)

 array[i+1]=array[i];

 array[pos]=new_el;

 no_el++;

 break;

 case 3:

 cout<<"Enter the value to be search : ";

 int key;

 cin>>key;

 for(pos=0;pos<no_el;pos++)

 {

 if(array[pos]==key)

 break;

 }

 if(pos==no_el)

 {

 cout<<"Search key not found";

 break;

 }

 for(i=pos;i<no_el;i++)

 array[i]=array[i+1];

 no_el--;

 break;

 case 4:

 cout<<"Enter the position to be edit : ";

 cin>>pos;

 cout<<"Enter the new value for old position : ";

 cin>>array[pos-1];

 break;

 case 5:

 cout<<endl;

 for(i=0;i<no_el;i++)

 cout<<endl<<"The element is : "<<array[i];

 break;

 case 6:

http://www.dailyfreecode.com/Code/perform-array-operations-append-2646.aspx

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 16 of 51

 cout<<"Enter the value to be search : ";

 cin>>key;

 for(pos=0;pos<no_el;pos++)

 {

 if(array[pos]==key)

 break;

 }

 if(pos==no_el)

 {

 cout<<"Search key not found";

 break;

 }

 cout<<"Search key found at : "<<pos+1;

 break;

 case 7:

 return(0);

 break;

 }

 getch();

 }

}

C++ Strings

C++ provides following two types of string representations −

 The C-style character string.

 The string class type introduced with Standard C++.

The C-Style Character String

The C-style character string originated within the C language and continues to be supported

within C++. This string is actually a one-dimensional array of characters which is terminated

by a null character '\0'. Thus a null-terminated string contains the characters that comprise

the string followed by a null.

The following declaration and initialization create a string consisting of the word "Hello".

To hold the null character at the end of the array, the size of the character array containing

the string is one more than the number of characters in the word "Hello."

char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

If you follow the rule of array initialization, then you can write the above statement as

follows −

char greeting[] = "Hello";

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 17 of 51

Following is the memory presentation of above defined string in C/C++ −

Actually, you do not place the null character at the end of a string constant. The C++

compiler automatically places the '\0' at the end of the string when it initializes the array. Let

us try to print above-mentioned string −

#include <iostream>

using namespace std;

int main () {

 char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

 cout << "Greeting message: ";

 cout << greeting << endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Greeting message: Hello

C++ supports a wide range of functions that manipulate null-terminated strings −

Sr. No Function & Purpose

1 strcpy(s1, s2);
Copies string s2 into string s1.

2 strcat(s1, s2);
Concatenates string s2 onto the end of string s1.

3 strlen(s1);
Returns the length of string s1.

4 strcmp(s1, s2);
Returns 0 if s1 and s2 are the same; less than 0 if s1<s2; greater than 0 if s1>s2.

5 strchr(s1, ch);
Returns a pointer to the first occurrence of character ch in string s1.

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 18 of 51

6 strstr(s1, s2);
Returns a pointer to the first occurrence of string s2 in string s1.

Following example makes use of few of the above-mentioned functions −

#include <iostream>

#include <cstring>

using namespace std;

int main () {

 char str1[10] = "Hello";

 char str2[10] = "World";

 char str3[10];

 int len ;

 // copy str1 into str3

 strcpy(str3, str1);

 cout << "strcpy(str3, str1) : " << str3 << endl;

 // concatenates str1 and str2

 strcat(str1, str2);

 cout << "strcat(str1, str2): " << str1 << endl;

 // total lenghth of str1 after concatenation

 len = strlen(str1);

 cout << "strlen(str1) : " << len << endl;

 return 0;

}

When the above code is compiled and executed, it produces result something as follows −

strcpy(str3, str1) : Hello

strcat(str1, str2): HelloWorld

strlen(str1) : 10

The String Class in C++

The standard C++ library provides a string class type that supports all the operations

mentioned above, additionally much more functionality. Let us check the following example

#include <iostream>

#include <string>

using namespace std;

int main () {

 string str1 = "Hello";

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 19 of 51

 string str2 = "World";

 string str3;

 int len ;

 // copy str1 into str3

 str3 = str1;

 cout << "str3 : " << str3 << endl;

 // concatenates str1 and str2

 str3 = str1 + str2;

 cout << "str1 + str2 : " << str3 << endl;

 // total length of str3 after concatenation

 len = str3.size();

 cout << "str3.size() : " << len << endl;

 return 0;

}

When the above code is compiled and executed, it produces result something as follows −

str3 : Hello

str1 + str2 : HelloWorld

str3.size() : 10

Some more detailing about String:
String is a collection of characters. There are two types of strings commonly used in C++

programming language:

 Strings that are objects of string class (The Standard C++ Library string class)

 C-strings (C-style Strings)

In C programming, the collection of characters is stored in the form of arrays, this is also

supported in C++ programming. Hence it's called C-strings.

C-strings are arrays of type char terminated with null character, that is, \0 (ASCII value of

null character is 0).

How to define a C-string?

char str[] = "C++";

In the above code, str is a string and it holds 4 characters.

Although, "C++" has 3 character, the null character \0 is added to the end of the string

automatically.

Alternative ways of defining a string

char str[4] = "C++";

char str[] = {'C','+','+','\0'};

char str[4] = {'C','+','+','\0'};

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 20 of 51

Like arrays, it is not necessary to use all the space allocated for the string. For example:

char str[100] = "C++";

Example 1: C++ String to read a word

C++ program to display a string entered by user.

#include <iostream>

using namespace std;

int main()

{

 char str[100];

 cout << "Enter a string: ";

 cin >> str;

 cout << "You entered: " << str << endl;

 cout << "\nEnter another string: ";

 cin >> str;

 cout << "You entered: "<<str<<endl;

 return 0;

}

Output

Enter a string: C++

You entered: C++

Enter another string: Programming is fun.

You entered: Programming

Notice that, in the second example only "Programming" is displayed instead of

"Programming is fun".

This is because the extraction operator >> works as scanf() in C and considers a space " " has

a terminating character.

Example 2: C++ String to read a line of text

C++ program to read and display an entire line entered by user.

#include <iostream>

using namespace std;

int main()

{

 char str[100];

 cout << "Enter a string: ";

 cin.get(str, 100);

 cout << "You entered: " << str << endl;

 return 0;

}

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 21 of 51

Output

Enter a string: Programming is fun.

You entered: Programming is fun.

To read the text containing blank space, cin.get function can be used. This function takes two

arguments.

First argument is the name of the string (address of first element of string) and second

argument is the maximum size of the array.

In the above program, str is the name of the string and 100 is the maximum size of the array.

string Object

In C++, you can also create a string object for holding strings.

Unlike using char arrays, string objects has no fixed length, and can be extended as per your

requirement.

Example 3: C++ string using string data type

#include <iostream>

using namespace std;

int main()

{

 // Declaring a string object

 string str;

 cout << "Enter a string: ";

 getline(cin, str);

 cout << "You entered: " << str << endl;

 return 0;

}

Output

Enter a string: Programming is fun.

You entered: Programming is fun.

In this program, a string str is declared. Then the string is asked from the user.

Instead of using cin>> or cin.get() function, you can get the entered line of text

using getline().

getline() function takes the input stream as the first parameter which is cin and str as the

location of the line to be stored.

Passing String to a Function

Strings are passed to a function in a similar way arrays are passed to a function.

#include <iostream>

using namespace std;

void display(char *);

void display(string);

int main()

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 22 of 51

{

 string str1;

 char str[100];

 cout << "Enter a string: ";

 getline(cin, str1);

 cout << "Enter another string: ";

 cin.get(str, 100, '\n');

 display(str1);

 display(str);

 return 0;

}

void display(char s[])

{

 cout << "Entered char array is: " << s << endl;

}

void display(string s)

{

 cout << "Entered string is: " << s << endl;

}

Output

Enter a string: Programming is fun.

Enter another string: Really?

Entered string is: Programming is fun.

Entered char array is: Really?

In the above program, two strings are asked to enter. These are stored

in str and str1respectively, where str is a char array and str1 is a string object.

Then, we have two functions display() that outputs the string onto the string.

The only difference between the two functions is the parameter. The first display() function

takes char array as a parameter, while the second takes string as a parameter.

This process is known as function overloading.

How to define a class in C++?
A class is defined in C++ using keyword class followed by the name of class.

The body of class is defined inside the curly brackets and terminated by a semicolon at

the end.

class className

 {

 // some data

 // some functions

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 23 of 51

 };

Example: Class in C++
class Test

{

 private:

 int data1;

 float data2;

 public:

 void function1()

 { data1 = 2; }

 float function2()

 {

 data2 = 3.5;

 return data2;

 }

 };

Here, we defined a class named Test.

This class has two data members: data1 and data2 and two member

functions: function1()and function2().

Keywords: private and public

You may have noticed two keywords: private and public in the above example.

The private keyword makes data and functions private. Private data and functions can be

accessed only from inside the same class.

The public keyword makes data and functions public. Public data and functions can be

accessed out of the class.

Here, data1 and data2 are private members where as function1() and function2() are public

members.

If you try to access private data from outside of the class, compiler throws error. This

feature in OOP is known as data hiding.

C++ Objects

When class is defined, only the specification for the object is defined; no memory or

storage is allocated.

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 24 of 51

To use the data and access functions defined in the class, you need to create objects.

Syntax to Define Object in C++

className objectVariableName;

You can create objects of Test class (defined in above example) as follows:

class Test

{

 private:

 int data1;

 float data2;

 public:

 void function1()

 { data1 = 2; }

 float function2()

 {

 data2 = 3.5;

 return data2;

 }

 };

int main()

{

 Test o1, o2;

}

Here, two objects o1 and o2 of Test class are created.

In the above class Test, data1 and data2 are data members and function1() and function2() are

member functions.

Example: Object and Class in C++ Programming
// Program to illustrate the working of objects and class in C++ Programming

#include <iostream>

using namespace std;

class Test

{

 private:

 int data1;

 float data2;

 public:

 void insertIntegerData(int d)

 {

 data1 = d;

 cout << "Number: " << data1;

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 25 of 51

 }

 float insertFloatData()

 {

 cout << "\nEnter data: ";

 cin >> data2;

 return data2;

 }

};

 int main()

 {

 Test o1, o2;

 float secondDataOfObject2;

 o1.insertIntegerData(12);

 secondDataOfObject2 = o2.insertFloatData();

 cout << "You entered " << secondDataOfObject2;

 return 0;

 }

Output

Number: 12

Enter data: 23.3

You entered 23.3

C++ Constructors

A constructor is a special type of member function that initializes an object automatically

when it is created.

Compiler identifies a given member function is a constructor by its name and the return

type.

Constructor has the same name as that of the class and it does not have any return type.

Also, the constructor is always public.

...

class temporary

{

private:

 int x;

 float y;

public:

 // Constructor

 Temporary (): x(5), y(5.5)

 {

 // Body of constructor

 }

};

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 26 of 51

int main()

{

 Temporary t1;

}

Above program shows a constructor is defined without a return type and the same name

as the class.

How constructor works?
In the above pseudo code, temporary () is a constructor.

When an object of class temporary is created, the constructor is called automatically,

and xis initialized to 5 and y is initialized to 5.5.

You can also initialize the data members inside the constructor's body as below.

However, this method is not preferred.

temporary()

{

 x = 5;

 y = 5.5;

}

// This method is not preferred.

Use of Constructor in C++
Suppose you are working on 100's of Person objects and the default value of a data

member age is 0. Initializing all objects manually will be a very tedious task.

Instead, you can define a constructor that initializes age to 0. Then, all you have to do is

create a Person object and the constructor will automatically initialize the age.

These situations arise frequently while handling array of objects.

Also, if you want to execute some code immediately after an object is created, you can

place the code inside the body of the constructor.

Example 1: Constructor in C++
Calculate the area of a rectangle and display it.

#include <iostream>

using namespace std;

class Area

{

 private:

 int length;

 int breadth;

 public:

 // Constructor

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 27 of 51

 Area(): length(5), breadth(2){ }

 void GetLength()

 {

 cout << "Enter length and breadth respectively: ";

 cin >> length >> breadth;

 }

 int AreaCalculation() { return (length * breadth); }

 void DisplayArea(int temp)

 {

 cout << "Area: " << temp;

 }

};

int main()

{

 Area A1, A2;

 int temp;

 A1.GetLength();

 temp = A1.AreaCalculation();

 A1.DisplayArea(temp);

 cout << endl << "Default Area when value is not taken from user" << endl;

 temp = A2.AreaCalculation();

 A2.DisplayArea(temp);

 return 0;

}

In this program, class Area is created to handle area related functionalities. It has two data

members length and breadth.

A constructor is defined which initialises length to 5 and breadth to 2.

We also have three additional member functions GetLength(), AreaCalculation() and

DisplayArea() to get length from the user, calculate the area and display the area

respectively.

When, objects A1 and A2 are created, the length and breadth of both objects are initialized

to 5 and 2 respectively, because of the constructor.

Then, the member function GetLength() is invoked which takes the value

of length and breadth from the user for object A1. This changes the length and breadth of

the object A1.

Then, the area for the object A1 is calculated and stored in variable temp by

calling AreaCalculation() function and finally, it is displayed.

For object A2, no data is asked from the user. So, the length and breadth remains 5 and 2

respectively.

Then, the area for A2 is calculated and displayed which is 10.

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 28 of 51

Output

Enter length and breadth respectively: 6

7

Area: 42

Default Area when value is not taken from user

Area: 10

Constructor Overloading
Constructor can be overloaded in a similar way as function overloading.

Overloaded constructors have the same name (name of the class) but different number of

arguments.

Depending upon the number and type of arguments passed, specific constructor is called.

Since, there are multiple constructors present, argument to the constructor should also be

passed while creating an object.

Example 2: Constructor overloading

// Source Code to demonstrate the working of overloaded constructors

#include <iostream>

using namespace std;

class Area

{

 private:

 int length;

 int breadth;

 public:

 // Constructor with no arguments

 Area(): length(5), breadth(2) { }

 // Constructor with two arguments

 Area(int l, int b): length(l), breadth(b){ }

 void GetLength()

 {

 cout << "Enter length and breadth respectively: ";

 cin >> length >> breadth;

 }

 int AreaCalculation() { return length * breadth; }

 void DisplayArea(int temp)

 {

 cout << "Area: " << temp << endl;

 }

};

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 29 of 51

int main()

{

 Area A1, A2(2, 1);

 int temp;

 cout << "Default Area when no argument is passed." << endl;

 temp = A1.AreaCalculation();

 A1.DisplayArea(temp);

 cout << "Area when (2,1) is passed as argument." << endl;

 temp = A2.AreaCalculation();

 A2.DisplayArea(temp);

 return 0;

}

For object A1, no argument is passed while creating the object.

Thus, the constructor with no argument is invoked which initialises length to 5

and breadthto 2. Hence, area of the object A1 will be 10.

For object A2, 2 and 1 are passed as arguments while creating the object.

Thus, the constructor with two arguments is invoked which initialises length to l (2 in this

case) and breadth to b (1 in this case). Hence, area of the object A2 will be 2.

Output

Default Area when no argument is passed.

Area: 10

Area when (2,1) is passed as argument.

Area: 2

Default Copy Constructor
An object can be initialized with another object of same type. This is same as copying the

contents of a class to another class.

In the above program, if you want to initialise an object A3 so that it contains same values

as A2, this can be performed as:

....

int main()

{

 Area A1, A2(2, 1);

 // Copies the content of A2 to A3

 Area A3(A2);

 OR,

 Area A3 = A2;

}

You might think, you need to create a new constructor to perform this task. But, no

additional constructor is needed. This is because the copy constructor is already built into

all classes by default.

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 30 of 51

Types of Constructors

1. Default Constructors: Default constructor is the constructor which doesn‟t take any

argument. It has no parameters.

// Cpp program to illustrate the

// concept of Constructors

#include <iostream>

using namespace std;

class construct {

public:

 int a, b;

 // Default Constructor

 construct()

 {

 a = 10;

 b = 20;

 }

};

int main()

{

 // Default constructor called automatically

 // when the object is created

 construct c;

 cout << "a: " << c.a << endl

 << "b: " << c.b;

 return 1;

}

Output:

a: 10

b: 20

Note: Even if we do not define any constructor explicitly, the compiler will

automatically provide a default constructor implicitly.

2. Parameterized Constructors: It is possible to pass arguments to constructors.

Typically, these arguments help initialize an object when it is created. To create a

parameterized constructor, simply add parameters to it the way you would to any other

function. When you define the constructor‟s body, use the parameters to initialize the

object.

// CPP program to illustrate

// parameterized constructors

#include <iostream>

using namespace std;

https://www.geeksforgeeks.org/c-internals-default-constructors-set-1/

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 31 of 51

class Point {

private:

 int x, y;

public:

 // Parameterized Constructor

 Point(int x1, int y1)

 {

 x = x1;

 y = y1;

 }

 int getX()

 {

 return x;

 }

 int getY()

 {

 return y;

 }

};

int main()

{

 // Constructor called

 Point p1(10, 15);

 // Access values assigned by constructor

 cout << "p1.x = " << p1.getX() << ", p1.y = " << p1.getY();

 return 0;

}

Output:

p1.x = 10, p1.y = 15

When an object is declared in a parameterized constructor, the initial values have to be

passed as arguments to the constructor function. The normal way of object declaration

may not work. The constructors can be called explicitly or implicitly.

 Example e = Example(0, 50); // Explicit call

 Example e(0, 50); // Implicit call

Uses of Parameterized constructor:
1. It is used to initialize the various data elements of different objects with different

values when they are created.

2. It is used to overload constructors.

Can we have more than one constructors in a class?

Yes, It is called Constructor Overloading.

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 32 of 51

3. Copy Constructor: A copy constructor is a member function which initializes an

object using another object of the same class. Detailed article on Copy Constructor.

C++ Constructor Overloading Example
/*.....A program to highlight the concept of constructor overloading.......... */

#include <iostream>

using namespace std;

class ABC

{

 private:

 int x,y;

 public:

 ABC () //constructor 1 with no arguments

 {

 x = y = 0;

 }

 ABC(int a) //constructor 2 with one argument

 {

 x = y = a;

 }

 ABC(int a,int b) //constructor 3 with two argument

 {

 x = a;

 y = b;

 }

 void display()

 {

 cout << "x = " << x << " and " << "y = " << y << endl;

 }

};

int main()

{

 ABC cc1; //constructor 1

 ABC cc2(10); //constructor 2

 ABC cc3(10,20); //constructor 3

 cc1.display();

 cc2.display();

 cc3.display();

 return 0;

 } //end of program

Output
x = 0 and y = 0

x = 10 and y = 10

x = 10 and y = 20

Explanation
In the above program, three constructors have been defined. The first one is invoked when no

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 33 of 51

arguments is passed in ABC cc1. The second one is invoked when we pass one integer value

as an argument as the constructor has one integer parameter. Similarly, when we pass two

arguments in ABC cc3, the constructor with two arguments is invoked.

Destructors in C++

What is destructor?
Destructor is a member function which destructs or deletes an object.

When is destructor called?
A destructor function is called automatically when the object goes out of scope:

(1) the function ends

(2) the program ends

(3) a block containing local variables ends

(4) a delete operator is called

How destructors are different from a normal member function?
Destructors have same name as the class preceded by a tilde (~)

Destructors don‟t take any argument and don‟t return anything

Can there be more than one destructor in a class?
No, there can only one destructor in a class with classname preceded by ~, no parameters and

no return type.

When do we need to write a user-defined destructor?
If we do not write our own destructor in class, compiler creates a default destructor for us.

The default destructor works fine unless we have dynamically allocated memory or pointer in

class. When a class contains a pointer to memory allocated in class, we should write a

destructor to release memory before the class instance is destroyed. This must be done to

avoid memory leak.

Can a destructor be virtual?
Yes, In fact, it is always a good idea to make destructors virtual in base class when we have a

virtual function. See virtual destructor for more details.

Destructors don‟t take any argument and don‟t return anything

class String

{

private:

 char *s;

 int size;

public:

 String(char *); // constructor

 ~String(); // destructor

};

String::String(char *c)

{

 size = strlen(c);

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 34 of 51

 s = new char[size+1];

 strcpy(s,c);

}

String::~String()

{

 delete []s;

}

C++ Access Specifiers
Access specifier can be either private or protected or public. In general access specifiers are

the access restriction imposed during the derivation of different subclasses from the base

class.

 private access specifier

 protected access specifier

 public access specifier

Private access specifier
If private access specifier is used while creating a class, then the public and protected data

members of the base class become the private member of the derived class and private

member of base class remains private.

In this case, the members of the base class can be used only within the derived class and

cannot be accessed through the object of derived class whereas they can be accessed by

creating a function in the derived class.

Following block diagram explain how data members of base class are inherited when derived

class access mode is private.

Note: Declaring data members with private access specifier is known as data hiding.

Sample program demonstrating private access specifier

// private access specifier.cpp

#include <iostream>

using namespace std;

class base

{

 private:

 int x;

 protected:

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 35 of 51

 int y;

 public:

 int z;

 base() //constructor to initialize data members

 {

 x = 1;

 y = 2;

 z = 3;

 }

};

class derive: private base

{

 //y and z becomes private members of class derive and x remains private

 public:

 void showdata()

 {

 cout << "x is not accessible" << endl;

 cout << "value of y is " << y << endl;

 cout << "value of z is " << z << endl;

 }

};

int main()

{

 derive a; //object of derived class

 a.showdata();

 //a.x = 1; not valid : private member can't be accessed outside of class

 //a.y = 2; not valid : y is now private member of derived class

 //a.z = 3; not valid : z is also now a private member of derived class

 return 0;

} //end of program

Output
x is not accessible

value of y is 2

value of z is 3

Explanation
When a class is derived from the base class with private access specifier the private members

of the base class can‟t be accessed. So in above program, the derived class cannot access the

So in above program, the derived class cannot access the member x which is private in the

base class, however, derive class has access to the protected and public members of the base

class. So the

Hence the function showdata in derived class can access the public and protected member of

the base class.

Common Programming Error

When function which is not the member of class or friend try to access a private member of

that class results in an error.

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 36 of 51

Protected Access Specifier
If protected access specifier is used while deriving class then the public and protected data

members of the base class becomes the protected member of the derived class and private

member of the base class are inaccessible.

In this case, the members of the base class can be used only within the derived class as

protected members except for the private members.

Following block diagram explain how data members of base class are inherited when derived

class access mode is protected.

Sample program demonstrating protected access specifier

// protected access specifier.cpp

#include <iostream>

using namespace std;

class base

{

 private:

 int x;

 protected:

 int y;

 public:

 int z;

 base() //constructor to initialize data members

 {

 x = 1;

 y = 2;

 z = 3;

 }

};

class derive: protected base

{

 //y and z becomes protected members of class derive

 public:

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 37 of 51

 void showdata()

 {

 cout << "x is not accessible" << endl;

 cout << "value of y is " << y << endl;

 cout << "value of z is " << z << endl;

 }

};

int main()

{

 derive a; //object of derived class

 a.showdata();

 //a.x = 1; not valid : private member can't be accessed outside of class

 //a.y = 2; not valid : y is now private member of derived class

 //a.z = 3; not valid : z is also now a private member of derived class

 return 0;

} //end of program

Output
x is not accessible

value of y is 2

value of z is 3

Public access specifier

If public access specifier is used while deriving class then the public data members of the

base class becomes the public member of the derived class and protected members becomes

the protected in the derived class but the private members of the base class are inaccessible.

Following block diagram explain how data members of base class are inherited when derived

class access mode is public

Sample program demonstrating public access specifier

// public access specifier.cpp

#include <iostream>

using namespace std;

class base

{

 private:

 int x;

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 38 of 51

 protected:

 int y;

 public:

 int z;

 base() //constructor to initialize data members

 {

 x = 1;

 y = 2;

 z = 3;

 }

};

class derive: public base

{

 //y becomes protected and z becomes public members of class derive

 public:

 void showdata()

 {

 cout << "x is not accessible" << endl;

 cout << "value of y is " << y << endl;

 cout << "value of z is " << z << endl;

 }

};

int main()

{

 derive a; //object of derived class

 a.showdata();

 //a.x = 1; not valid : private member can't be accessed outside of class

 //a.y = 2; not valid : y is now private member of derived class

 //a.z = 3; not valid : z is also now a private member of derived class

 return 0;

} //end of program

Output
x is not accessible

value of y is 2

value of z is 3

This is all about C++ access Specifiers.

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 39 of 51

Implementing and accessing class members

Defining Class and Declaring Objects
A class is defined in C++ using keyword class followed by the name of class. The body of

class is defined inside the curly brackets and terminated by a semicolon at the end.

Declaring Objects: When a class is defined, only the specification for the object is defined;

no memory or storage is allocated. To use the data and access functions defined in the class,

you need to create objects.

Syntax:

ClassName ObjectName;
Accessing data members and member functions: The data members and member functions

of class can be accessed using the dot(„.‟) operator with the object. For example if the name

of object is obj and you want to access the member function with the name printName() then

you will have to write obj.printName() .

Accessing Data Members
The public data members are also accessed in the same way given however the private data

members are not allowed to be accessed directly by the object. Accessing a data member

depends solely on the access control of that data member.

This access control is given by Access modifiers in C++. There are three access modifiers

: public, private and protected.

// C++ program to demonstrate

// accessing of data members

#include <bits/stdc++.h>

using namespace std;

class Geeks

{

 // Access specifier

 public:

 // Data Members

https://www.geeksforgeeks.org/access-modifiers-in-c/

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 40 of 51

 string geekname;

 // Member Functions()

 void printname()

 {

 cout << "Geekname is: " << geekname;

 }

};

int main() {

 // Declare an object of class geeks

 Geeks obj1;

 // accessing data member

 obj1.geekname = "Abhi";

 // accessing member function

 obj1.printname();

 return 0;

}

Output:

Geekname is: Abhi

Member Functions in Classes
There are 2 ways to define a member function:

 Inside class definition

 Outside class definition

To define a member function outside the class definition we have to use the scope resolution

:: operator along with class name and function name.

// C++ program to demonstrate function

// declaration outside class

#include <bits/stdc++.h>

using namespace std;

class Geeks

{

 public:

 string geekname;

 int id;

 // printname is not defined inside class defination

 void printname();

 // printid is defined inside class defination

 void printid()

 {

 cout << "Geek id is: " << id;

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 41 of 51

 }

};

// Definition of printname using scope resolution operator ::

void Geeks::printname()

{

 cout << "Geekname is: " << geekname;

}

int main() {

 Geeks obj1;

 obj1.geekname = "xyz";

 obj1.id=15;

 // call printname()

 obj1.printname();

 cout << endl;

 // call printid()

 obj1.printid();

 return 0;

}

Output:

Geekname is: xyz

Geek id is: 15

Note that all the member functions defined inside the class definition are by default inline,

but you can also make any non-class function inline by using keyword inline with them.

Inline functions are actual functions, which are copied everywhere during compilation, like

pre-processor macro, so the overhead of function calling is reduced.

Note: Declaring a friend function is a way to give private access to a non-member function

The members of a class can be directly accessed inside the class using their names.
However, accessing a member outside the class depends on its access specifier. The
access specifier not only determines the part of the program where the member is
accessible, but also how it is accessible in the program.

Accessing Public Members: The public members of a class can be accessed outside the class

directly using the object name and dot operator '. The dot operator associates a member with

the specific object of the class.

The syntax for accessing a public data member outside the class is

obj_name.member_name; The syntax for calling a public member function is

object_name.function_name(parameter_list);

To understand the concept of accessing public members of a class, consider this example.

Example : A code segment to demonstrate the concept of accessing public members of a class

#include<iostream>

using namespace std;

class number

http://quiz.geeksforgeeks.org/friend-class-function-cpp/

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 42 of 51

{

int x;

public:

int y;

int z;

void fn(int a);

} ;

int main ()

{

number p;

p.y = 7;

p.z = 2;

p.x = 3;

p.fn (10) ;

return 0;

}

In this example, a class number having three data members x, y and z is defined. The data

member x is private by default, whereas, y and z are declared as public. Hence, y and z can

be accessed directly outside the class using the object name and the dot operator. However, x

being a private data member cannot be accessed directly outside the class.

Accessing Private Members: The private members of a class are not accessible outside the

class not even with the object name. However, they can be accessed indirectly through the

public member functions of that class.

To understand the concept of accessing private members of a class, consider this example.

Example : A program to demonstrate the concept of accessing private members of a class

class book

{

/ / body of class as in Example1

} ;

int main ()

{

book bookl;

book1.price = 350;

bookl.title="Exploring IT";

bookl.getdata ("Exploring IT", 350);

return 0;

}

In this example, the object bookl of class book is used to access the public member function

getdata (), which provides an indirect access to private data members title and price.

The basics of classes and objects can be summarized in a single program as shown in this

example.

Example : A program to demonstrate the concept of classes and objects in C++

#include<iostream>

using namespace std;

class book

{

// definition of a class

char title [30];

float price;

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 43 of 51

public:

void getdata(char[] ,float);

void putdata ();

} ;

void book :: getdata (char a [],float b)

{

// definition of member function

strcpy(title, a);

price = b;

}

void book :: putdata(). II Definition of member function

{

Cout<<"Title: "<<title<<", ";

Cout<<"Price:Rs"<<price;

}

int main ()

{

book book1, book2, book3; // creating objects

book1.getdata("Exploring IT" ,350);

// reading data into book 1

book2. getdata ("JAVA", 300) ;

//reading data into book 2

book3.getdata("Computer Applications",400);

// reading data into book 3

Cout<<"\nTitle and Price of Book l\n";

bookl.putdata () ; II displaying data of book 1

cout<<"\nTitle and Price of Book 2\n";

book2.putdata (); II displaying data of book 2

cout<<"\nTitle and Price of Book 3\n";

book3.putdata();

return 0;

}

 The output of the program is

 Title and Price of Book 1

Title: Exploring IT, Price: Rs 350

Title and Price of Book 2

Title: JAVA, Price: Rs 300

Title and Price of Book 3

Title: Computer Applications, Price: Rs 400

Working with objects : constant objects, nameless objects, live objects,

arrays of objects

Constant Objects:
Class member functions can be made const. What does this mean? To understand, you must

first grasp the concept of const objects.

A const object is defined the same for a user-defined type as a built-in type. For example:

const int i = 1;

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 44 of 51

const blob b(2);

Here, b is a const object of type blob. Its constructor is called with an argument of two. For

the compiler to enforce constness, it must ensure that no data members of the object are

changed during the object‟s lifetime. It can easily ensure that no public data is modified, but

how is it to know which member functions will change the data and which ones are “safe” for

a const object?

If you declare a member function const, you tell the compiler the function can be called for

a const object. A member function that is not specifically declared const is treated as one that

will modify data members in an object, and the compiler will not allow you to call it for

a const object.

It doesn‟t stop there, however. Just claiming a member function is const doesn‟t guarantee it

will act that way, so the compiler forces you to reiterate the const specification when defining

the function. (The const becomes part of the function signature, so both the compiler and

linker check for constness.) Then it enforces constness during the function definition by

issuing an error message if you try to change any members of the object or call a non-

const member function. Thus, any member function you declareconst is guaranteed to

behave that way in the definition.

To understand the syntax for declaring const member functions, first notice that preceding

the function declaration with const means the return value is const, so that doesn‟t produce

the desired results. Instead, you must place the const specifier after the argument list. For

example,

//: C08:ConstMember.cpp

class X {

 int i;

public:

 X(int ii);

 int f() const;

};

X::X(int ii) : i(ii) {}

int X::f() const { return i; }

int main() {

 X x1(10);

 const X x2(20);

 x1.f();

 x2.f();

} ///:~

Note that the const keyword must be repeated in the definition or the compiler sees it as a

different function. Since f() is a const member function, if it attempts to change iin any

way or to call another member function that is not const, the compiler flags it as an error.

You can see that a const member function is safe to call with both const and non-

const objects. Thus, you could think of it as the most general form of a member function (and

because of this, it is unfortunate that member functions do not automatically default to const).

Any function that doesn‟t modify member data should be declared as const, so it can be used

with const objects.

Here‟s an example that contrasts a const and non-const member function:

//: C08:Quoter.cpp

// Random quote selection

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 45 of 51

#include <iostream>

#include <cstdlib> // Random number generator

#include <ctime> // To seed random generator

using namespace std;

class Quoter {

 int lastquote;

public:

 Quoter();

 int lastQuote() const;

 const char* quote();

};

Quoter::Quoter(){

 lastquote = -1;

 srand(time(0)); // Seed random number generator

}

int Quoter::lastQuote() const {

 return lastquote;

}

const char* Quoter::quote() {

 static const char* quotes[] = {

 "Are we having fun yet?",

 "Doctors always know best",

 "Is it ... Atomic?",

 "Fear is obscene",

 "There is no scientific evidence "

 "to support the idea "

 "that life is serious",

 "Things that make us happy, make us wise",

 };

 const int qsize = sizeof quotes/sizeof *quotes;

 int qnum = rand() % qsize;

 while(lastquote >= 0 && qnum == lastquote)

 qnum = rand() % qsize;

 return quotes[lastquote = qnum];

}

int main() {

 Quoter q;

 const Quoter cq;

 cq.lastQuote(); // OK

//! cq.quote(); // Not OK; non const function

 for(int i = 0; i < 20; i++)

 cout << q.quote() << endl;

} ///:~

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 46 of 51

Neither constructors nor destructors can be const member functions because they virtually

always perform some modification on the object during initialization and cleanup.

The quote() member function also cannot be const because it modifies the data

member lastquote (see the return statement). However, lastQuote() makes no

modifications, and so it can be const and can be safely called for the const object cq.

Nameless Objects:

Sometimes to reduce the code size, we create nameless temporary object of class. When we

want to return an object from member function of class without creating an object, for this:

we just call the constructor of class and return it to calling function and there is an object to

hold the reference returned by constructor. This concept is known as nameless temporary

objects, using this we are going to implement a C++ program for pre-increment operator

overloading.

using namespace std;

#include <iostream>

class Sample

{

 //private data section

 private:

 int count;

 public: //default constructor

 Sample()

 { count = 0;}

 //parameterized constructor

 Sample(int c)

 { count = c;}

 //Operator overloading function definition

 Sample operator++()

 {

 ++count;

 //returning count of Sample

 //There is no new object here,

 //Sample(count): is a constructor by passing value of count

 //and returning the value (incremented value)

 return Sample(count);

 }

 //printing the value

 void printValue()

 {

 cout<<"Value of count : "<<count<<endl;

 }

};

//main program

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 47 of 51

int main()

{

 int i = 0;

 Sample S1(100), S2;

 for(i=0; i< 5; i++)

 {

 S2 = ++S1;

 cout<<"S1 :"<<endl;

 S1.printValue();

 cout<<"S2 :"<<endl;

 S2.printValue();

 }

 return 0;

}

In this program, we used nameless temporary object in overloaded member function.

Here, we did not create any object inside the member function. We are just calling the

constructor and returning incremented value to calling function

Live Objects

Objects created dynamically with their data members initialized during creation are known as

Live Objects. To create a live object, constructor must be invoked automatically which

performs initialization of data members. Similarly the destructor for an object must be

invoked automatically before the memory for that object is deallocated.

A class whose live object is to be crated must have atleast one constructor. The syntax for

creating a live object is as follows.

Pointer_to_Object = new Class_name(Parameters)

Sample Program

#include <iostream.h>

#include <string.h>

class student

{

int rno;

char *name;

public:

studen(void)

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 48 of 51

{

char flag, str[50];

cout<<”Do u want to initialize the object y/n”;

cin>>flag;

if(flag == „y‟)

{

cout<<”Enter the student number”;

cin>>rno;

cout<<”Enter the student name”;

cin>>name;

}

else

{

rno =0;

name = NULL;

}

}

student(int rn)

{

rno = rn;

name = NULL;

}

student(int rn, char *n)

{

rno = rn;

name = n;

}

~student()

{

if(name)

delete name;

}

void show(void)

{

if(rno)

cout<<”Roll number is”<<rno<<endl;

else

cout<<”Number not initialized”<<endl;

if(name)

cout<<”Student name is “<<name<<endl;

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 49 of 51

else

cout<<”Name not initialized”<<endl;

}

};

void main()

{

student *s1, *s2, *s3;

s1 = new student;

s2 = new student(1);

s3 = new student(1,”Magesh”);

cout<<”Live objects contents………….”<<endl;

s1->show();

s2->show();

s3->show();

delete s1;

delete s2;

delete s3;

}

Array of Object

An array of objects, all of whose elements are of the same class, can be declared just as an

array of any built-in type. Each element of the array is an object of that class. Being able to

declare arrays of objects in this way underscores the fact that a class is similar to a type.

Declaring Arrays of Objects

The simplest way to create an array of Frame objects is with the following declaration:

 Frame windowList[5]; // an array of 5 Frame objects

An important aspect of declaring arrays of objects in this way is that all of the objects in the

array must be constructed in the same way. It is not possible with this declaration to give each

different object in the array a different set of constructor values. Furthermore, since no

constructor arguments are given, the class must contain a constructor that has no arguments.

Arrays of this form are useful when all of the objects should be constructed in a uniform way

or when the "real" constructor information will not be know until sometime during the

computation. In the later case, the array can be declared and the individual objects

manipulated when the information is discovered. For example, the user may be asked to

supply the name of a file which contains the desired locations and shapes for each of the

windowList objects. This information can be read and each array element can then be moved

and resized accordingly.

In other cases, it is desired that each of the objects in an array be specifically and individually

constructed at the time the array is declared. This can be done as follows:

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 50 of 51

 Frame windowList[5] = {Frame("Window 0", 0, 100, 100, 100),

 Frame("Window 1", 25, 100, 100, 100),

 Frame("Window 2", 50, 100, 100, 100),

 Frame("Window 3", 75, 100, 100, 100),

 Frame("Window 4", 100, 100, 100, 100)

 };

Each object in the array is constructed using explicitly specified values for each constructor

argument. This allows the programmer complete control over the initialization of the objects

in the array.

It is not necessary to specifiy all of the constructor arguments if there are overloaded

constructors, as there are for the Frame class. An object in an array can be constructed using

any of the constructors. For example, if it was only desired to specify the name and initial

location, but not the shape, for each object in the array then the following declaration would

suffice:

 Frame windowList[5] = {Frame("Window 0", 0, 100),

 Frame("Window 1", 25, 100),

 Frame("Window 2", 50, 100),

 Frame("Window 3", 75, 100),

 Frame("Window 4", 100, 100)

 };

In this case the overload constructor will determine the shape of each object. It is also

possible to use different constructors for each objects as shown here:

 Frame windowList[5] = {Frame("Window 0", 0, 100, 100, 100),

 Frame("Window 1", 25, 100),

 Frame("Window 2"),

 Frame(),

 Frame("Window 4", 100, 100, 100, 100)

 };

In this version, the first and last objects in the array are constructed by explicitly providing

each constructor argument. The constructor for the object named "Window 1" specifies only

the location. The constructor for the object named "Window2" specifies only the name. The

constructor for the object as subscript position 3 specifies no constructor arguments, allowing

all defaults to apply, including the name.

Manipulating Objects in an Array

An object in an array can be manipulated by a combination of the subscripting operator "[]" -

to select which object of the array is to be manipulated - and the "." (dot) operator - to apply

the operation to the selected object. For example:

 windowList[3].MoveTo(100, 50);

Object Oriented Programming – I (US03CBCA23) (Unit-2)

Compiled By: Dr. Mehul Patel Page 51 of 51

moves the object with subscript 3 to a new position. Remember that the subscripts begin with

0.

One of the advantages of working with arrays of objects is that it is easy to program the same

operation over all of the objects. For example, a single loop can shrink all of windows by

10% as follows:

 for (int i = 0; i++; i<5)

 windowList[i].resize(0.9);

More complex operations involving the elements in the array are also possible. For example

the following loop positions the windows along a diagonal from upper left toward lower

right, makes them all of the size:

 for (int i = 0; i++; i<5) {

 windowList[i].MoveTo(10*i+1, 10*i+1);

 windowList[i].Resize(50, 50);

 }

